DG e ggp,

PEAR \ o Form Approved
I AD-A222 706 ATION PAGE OMe No.0704.0188

1a. REPORT szwng{ é:ltjassmunou 1b. RESTRICTIVE MARKINGS

- UNCLASSI NONE

22, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE:
b, DECLASSIFICATION /DOVWNGRADING SCHEDULE DISTRIBUTION UNLIMITED, '
4, PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFPIT/CI/CIA- 90-013D

6a. NAME OF PERFORMING ORGANIZATION éb. (‘)I;Fl(gl §Y2A’B§)L 7a. NAME OF MONITORING ORGANIZATION
AFIT STUDENT AT applicadie
North Carolina State Univ AFIT/CIA 1,

6¢. ADDRESS (City, State, and 2/P Code} . 7b. ADDRESS {City, State, and 2IP Code)

Wright-Patterson AFB OH 45433-6583

8a. NAME OF FUNDING/ SﬂONSOPING ' 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION | 0f applicablz) ’ ‘
8¢, ADDRESS (City, State, and 2{P Cods}] 16. SOURCE OF FUNDING NUMBERS
’ PROGRAM PRMNJECT ATASK WORK UNIT
e ELEMENT NO. NO. NO. ACCESSION NO,

11, TITLE {nclude Security Clasification) \UNCLASSLELED)

Conjugate Gradient Methods for Constrained least Squares Problems

b i A S e A R = e
12, PERSONAL AUTHOR(S)
Douglas Jawes

| 132.7YP% GF REFORT ~ 13b, TIME COVERED 12, DAYE OF REPORY (Year, Month, Day) [15. PAGE COUNT
TIREIS/NICSERTATION FROM 10 1960 1335
16. SUPPLEMENTARY NOTATION AYPROVED FOR PUBLIC RELERSE 1AW AFR 190~1

ERNEST.A. HAYGOOD, lst Lt, USAF
7 Executive Officer, Civilian Institution Proaoram
17 ~ COSAYI CODES 18, SUBIECT TERMS (Continue On reverse if necessary and identity by block aumber)

R GROUP SUB-GROUP

19, ABSTRACT (Continue o Fewerat 7 Meceliaty and ientily by bIoCk nUTSer

), 8
P Y

—

90 06 15 074

30, DISTRIIUTION JAVARABIUITY OF ASSTRACT ’ 20, ABSTAACT SECUNTY CLASSFICATION
CEuncAsspEonNUMED ©) Same AS ReT. [ovic USERS UNCLASSIFTED

F) ¥ RESPONSIBLE INDIVIDUAL 23D, TELEPHONE (include Ares Cooe) | 22¢. OFFICE SYABOL
”i:m‘a‘%s% HAYGOOD, 15t Lt, USAF (5131 zss" 2259 AFIT/CI

' 'DForm 1473, JUN 86 Previews editions are obsdlete. SECURITY CLASSIFICATION OF TiiS PAGE

&1!_; T R e e Smaiaie . i — e . ! N :

Conjugate Gradient Methods
for Constrained Least Squares Problems

by
Douglas James

A thesis aubmitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of tLe
requirements for the Degree of
~ Doctor of Philosophy

Department of Mathematics

Raleigh
1990

Approved by:

C. 0. ekl ng‘
ﬁarl T. Kelley 7 lobert E Whlte
. " ‘
Stefhc‘n J:% gi l{obert J. Plemmons

Chairman, Advisory Committee

Abstract

JAMES, DOUGLAS. Conjugate Gradient Methods for Constrained LeastM M;
. L Plesw?
\Sguares Problems (directed by Robert J. Plemmons). .@rlow, NI °l“'°\5,' aud

\

%n 1988, Barlow, Nichols, and Plemmons proposed an order-reducing con-

iugate gradient algorithm for solving constrained least squares problems. They
nroved that this method, which we call Algorithm| BNP) is superior to p-cyclic
Iiéawlg':i;éxact anthmetxg, o ‘féSu(c 2SS\We. overrela XCL\ 6\’\\3
>Here we continue the study of Algorithm BNP. We identify and correct a
source of instability in the original algorithm, and develop a parallel version
suitable for substructured problems. We prove that BNP is superior to block
accelerated overrelaxation (AOR), and establish a connection between BNP and
a preconditioned form of the weighting method. We also show that BNP can
be viewed as a nullspace method, in which a distinguished choice of the basis
for the nullspace is used but never formed. Finally, we exploit this nullspace
characterization to extend BNP, producing a class of algorithms we call implicit
nullspace methods. These methods allow great flexibility in the choice of pre-
conditioner, and can be used to solve problems for which BNP is not well suited.
Like BNP, the extensions are suitable for parallel implementation on substruc-
tured problems. Experiments on structural engineering and Stokes Flow models

suggest that BNP and its extensions offer a competitive alternative to existing —

iterative algorithms for solving constrained least squares problems. -ﬁ
The appendix describes a mechanism which can cause the breakdown of ed 8
incomplete QR factorizations. ﬁt\iwor AS; .ﬁ")% So R) A’ DR‘J ' w“m“—_"
-2 heoretread Malbepyaties) A%o !"r{r\m) ﬁg_tgggugx_og/__;
GLog,y Mymer: ro| Anal 7’—5‘5 | “"’“;‘;‘;.11}_.:&%@:2
oD e al € quati o7d, vtot | Spastad
G Constigunkd s nabon Brveny =N 7 il

“I don’t know enough,” replied the Scarecrow cheerfully. “My head
is stuffed with straw, you know, and that is why I am going to Oz to
ask him for some brains.”

“QOh, I see,” said the Tin Woodman. “But, after all, brains are not
the best things in the world.”

“Have you any?” inquired the Scarecrow.

“No, my head is quite empty,” answered the Woodmaa; “but once I
had brains, and a heart also; so, having tried them both, I should much

rather have a heart.”

L. Frank Baum
The Wizard of Oz

To my brother David.

I remain convinced that
we are the ones who are handicapped.

Acknowledgements

My graduate studies were sponsored by the Department of Mathematical Sci-
ences, US Air Force Academy, CO, and funded by the Air Force Institute of
Technology, Wright-Patterson Air Force Base, OH. My ressarch was directed
by Robert J. Plemmons under Air Force Office of Scientific Research grant
no. AFOSR-88-0285. The Office of Scientific Research, under DURIP grant
no. AFOSR-89-0124, also funded the Alliant FX/40 multiprocessor used for all
numerical experiments. [have waited a long time for the opportunity to pursue
this degree, and am grateful to these agencies for giving me the chance to do
80.

My experience at North Carolina State has been a rich and rewarding one; I
am indebted to the faculty and staff, especially the members of my committee,
for making it so. I especially appreciate all that Professor and Mrs. Plemmons
have done to help my family feel welcome. We feel at home here, and we leave
Raleigh very reluctantly.

Three friends and mathematicians deserve special thanks. To Professor Jesse
Barlow, The Peonsylvania State University: he was probably the first to sense
the poasibility of a generalization to the original order-reducing conjugate gra-
dient algorithm, and his comments and ctiticisms on all aspects of this research
helped us ask the proper questions. Had our schedules allowed us to work

together closely on this problem, this thesis would have been richer. To Pro-
fessor Gil Strang, Massachusetts Institute of Technology: his book on applied
mathematics got me excited about equilibrium equations, while his advice and
encouragement helped to keep me going. And to Jim Northrup, formerly my
office mate at NC State, and now a professor at Worcester Polytechnic Insti-
" tute: in the fall of 1987, following my ten year absence from school, he made it
possible for me to “hit the ground running” by patiently reacquainting me with
the world of computing .

I cannot conclude my acknowledgements without mentioning my family. I
thank my parents for gifts and sacrifices beyond words. And to my wife, Pam,
and daughter, Bethany, I can only say this: your patience, support, and under-
standing these last three years has exceeded anything I had a right to expect.
Ladies, I have some making up to do.

iv

Contents

List of Tables vii
List of Figures viii
List of Symbols and Abbreviations ix
1 Introduction 1
2 Formulation cf the Problem 5
gé grolzleEx’I: LSI% msdhigqu:lint F%ximgn.m Situctures | g
. irst Example: ic ais ineering Structures , . . .
2.3 Second Exa‘:nple: Stokes Flzw 15
2.4 Substructured Problems e e e 26
3 Description of the Algorithms 32
3.1 Modified Kuhn-Tucker Equations 3.
3.2 thm BNP o e .. 38
3.3 Other Iterative Algorithms ., 46
4 Comparison of the Algorithms 52
4.1 BNP vs AOR: Ordinary Least Squares 53
4.2 BNP vs AOR: Constrained Least Squazes. 62
43 BNP and Preconditioned Weighting 68
8 Implicit Nullspace Methods 72
8.1 BNP as an Implicit Nullspace Method ()
52 Algorithm INM: General Case 8
5.3 Examples of Implicit Nullspace Methods 82
6 Numerical Experiments 89
6.1 Overview of riments e e et e 990
6.2 Small Full- Structures Problems 92
6.3 Larger Full-Rank Structures Problems 97
6.4 Rank-Deficient Structures Problems 101
65 StokesFlowt iinenennnn 105
7 Conclusions 109

8 References 111
9 Appendix: The Breakdown of Incomplete QR Factorizations 114

9.1 Preconditioning with Incomplete Factorizations 114
9.2 A StrategyforIncompleteQR 116
9.3 Examples of Incomplete QR Breakdown 119

List of Tables

Algorithm BNP (P }({ roblemLSE)
Three-Block AOR (Problem LSE)

Algorithm BNP (Unconstrained Least Squares)
Three-Block AOR (Unconstrained Least Squares)

Implicit Nullspace Method (General Case)

Numerical Results: Small Full-Rank Structures Problems
Numerical Results: Large Full-Rank Structures Problems
Numerical Results:] Deficient Structures Problems
Numerical Results: Stokes Flow on Unit Square,

eSO o b O
OO s e N PO

List of Figures

Pin-jointed Rigid Bar Truss
Equilibrium Constmnt Eﬁl b for Pin-jointed Truss
Typical Planar and Solid Elements
Matrices for Static Structures Problem,
Marker-and-Cell Discretization of Unit Square (n,=3)
MAC Stencil: Divergence Qperator
Matrix Eo for MAC Grid (n.==3)
MAC Stencil: Horizontal Momentum
MAC Boundary Corrections: Horizontal Momentusy
.10 Blocks of G for the StokesProblem

O =~JILN b IO =

12 Narrow Substructuring of MACGrid
13 MAC Stencil (Horizontal Momentum) at a Transition L.\ne ce
14 Wide Substructuring f MACGrid R

Forming A, from trapezoidal B,
Forml:: A: fromataicstep B, N
Forming Stairstep E, fmm Substructured £ . .. o L. ...
Forming A, from Substeuctured £,

Interlacing in Algorithm INMGI b e e

Models for Small Full-Rank Problems
Models for e Full.lRank Problems
Models for _ Deficient Problems

1O 12 10 8080 10 13 89 O B D RO 1O 1O
Pt Do P Pt

¢ oo
- I DD -

s
Cd B wee

11 Substructuring a Finite Element Medel,.. _

List of Symbols and Abbreviations

1. Symbols. When appropriate, the equation number of the first reference
to a symbol appears in parentheses. We do not include the following types of
symbols in the table: (1) symbols representing iterative approximations (for
example, we presume it is clear from the context that y(*) is an approximation
of y at the kth iterste); (2) “tilde versions™ of primary symbols (in the body of
the text, a tilde (°) over a symbol indicates that the symbol is associated with
an unconstrained least squares problem); and (3) symbols used a single time
during minor manipulations.

Ay Preconditioner formed from rows Dy Disgonal block for 2.SOR and
of £ snd G (3.9) 2-A0R (3.38)
A3 Alternate notatica foe Gy (3.3) Dy g‘m}!‘w for 3-SOR and
B, INM Precoaditicoer formed from -
E aad M, wing interlacing DF ith diagoasd block of Fy (2.26)
schemme (3.18) D! ith disgooal block of Fy (3.26)
By INM Preconditioner formed bom £ Equilibrium matix (1.1)
Bt M, a‘f;’;‘““" By Lef block of £, (3.6)
R m""m'd" wide of int ks En Right block of E, (3.8)
- problem LSE (1.1) E, Stairstep form of £ (3.10)
cotnponent (2.17) Ly Equilibrivn matrix augmented
[N b augmented with ¢, (3.4) with dependent row (2.17)
b rbougmented with cin € Yourg's Modulus (2.12)
weighting metbod (3.38) F The matrix GTG (2.7) .
C WiW;'ia Pwgt (3.47) Fu laStokes problemn, block of £
¢ Comu ‘,'g‘g““‘““"" velozities (2.25)
@ Upper blockof ¢ (3.4) #y hww.mar
¢2 Lowerblockof ¢ (34) velocities (2.25)
D Block disgooal matrix for SOR ! Arbitzaty righthand side in
ead AOR splitting (3.35) linear sysien (3.35)

&

h
5

Ga

G
Ga

* 3

n~F

Righthand side in conservation
of momentum equation (2.13)
First component of £ (2.18)
Second component of f (2.19)
Coeflicient matrix iz problem
LSE (2.21)

In Stokes problem, block of G
amociated with horizontal
velocities (2.30)

Blocks in upper-triangular G;
non-etsndard numbering (3.7)
Upper block of G (3.1)

Lower block of G (3.1)

In Stokes problem, block of G
amociated with vertical
velocities (2.30)

Righthand side in conservatico
of maes equation (2.14)
function g evaluated at center of
stencil (2.15)

Righthand side of BNP oz INM
system (3.21)

Stokes mesh leagth (2.15)
Hentity moatrix

Block disgonal mattix with 0
and J mateicns as the two
disgounal blocks (3.4)
Rightmost block of K (3.18)
Block lower trisngular matrix for
SOR and AOR splitting (3.35)
Augmentation matrix used o
forem B, (5.17)
Number of rows in E (1.1)
Number of rows in G (1.1)
Basis matrix for the nullspace of
E (4.18),(5.2)

Fundamental basis roatrix for
mallspace of £ (5.4)

Nuzhber of unknowas in problem
LSE (1.1)

In Stokes problemn, numbsr of
oells on each side of unit square
Permutation matrix (3.9)

Left block of P (3.9)

o S

STadb LI

¥ T8 § 8§ §g=

Right block of P (3.9)
pressure (2.13)

quadratic form in constrained
minimization formulation (2.4)
Direction vector for correcting y
in BNP (3.28)

Residual r = ¢ — Gy (2.6)
Upper block of 7; unknowa in
BNP (3.4)

Lower block of r (3.4)

kth Krylov subapoce (4.14)
The vector -GTe (1.1)

BNP directica vector (3.27)
Thickness of element (2.12)
Block upper triangular matrix
for both the SOR and AQOR
splittings (3.35)

Flow velocity vector (2.13)

ith component of' y (2.18)

rE augmented with G in
weighting method (3.38)
upper block of ¥ (3.43)

lower block of W (3.44)
unkuown in variouws
preconditioned syatems (3.47)
Upper black of w (4.33)

Lower block of w 14.33)

As a veclor, the unknown in
INM (4.2); a0 & scalar, borizontal
coordinate divection (2.18)

 The matrix Ay A7 K (3.20)

Unkaown in problem LSE (1.1)
Velocity on s Betitious bousdary
edge (2.22)

Cotponent of y in centers of
stencil (2.15)

Component of y aloag east edge
of stencil (2.15)

Upper block of y (5.12)
Cotponent of y along north
edge of stencil (2.15)

Particular solution to constraint
Ey=4(4.17)

yr Lower block of y (5.12) B Lagrange multiplier in saddle

ys Component of y along south point formulation (2.8)
edge of stencil (2.15) pe Component of u along east edge
yw Component of y along west edge of stencil (2.20)
of stencil (2.15) pw Component of u along west edge
z As a vector, unknown in of stencil (2.20)
arbitrary linear system (3.35); as v Poisson’s Ratio (2.12)
& scalar, vertical coordinate »i BNP defect (3.29)
direction (2.10) r weighting parameter in
z3 A augmented with ry (3.4) weighting method (3.38)
B AOR acceleration parameter w Relaxation parameter in SOR
(3.37) and AOR (3.35)
7 BNP scaie factor (3.27) V Gradient operator (2.13)
A Lagrange multiplier in V- Divergence operator (2.14)
Kuhn-Tucker formulation (2.6) V? Laplacian operator (2.13)

2. Abbreviations. The description of each abbreviation includes a reference
to the section in which the item is first discussed in detail.

AOR Accelerated Over-relaxation (§3.3)
BNP Order-reducing conjugate gradient algorithm due to Barlow, Nichols,
and Plemmons (§3.2)

INM Implicit Nullspace Method (£5.2)
INMF Implicit Nullspace Method with preconditioner based on F (§5.3)
INMG Implicit Nullspace Method using rows of G (§5.3)
INMGI Implicit Nulispace Method using rows of G snd I (§5.3)
INMI Implicit Nullspace Method using rows of I (§5.3)
IQR Incomplete QR (§9.1)
LSE Equality constrained least squares problem (§2.1)
PWgt Preconditioned Weighting Algorithm (§3.3)
SOR Successive Over-relaxation (§3.3)
WLS Weighted Least Squares (§3.3)
2.ACR Two-block Accelerated Over.relaxation (§3.3)
2-SCR 2-cyclic Successive Over-relaxation (§3.3)

~ $AOR Three-block Accelerated Over-zelaxation (§3.3)
3-SOR 3-cyclic Successive Over-relaxation (§3.3)

1. Introduction

In this thesis, we cunsider the solution of thu equality constrained least
squares problem, or problein LSE: given an m;xn matrix E, an myxn

matrix G, an m; x1 vector &, and «n max1 vector ¢,
minimize |Gy ~¢fla such that Ey=2b (1.1)

We place ¢ ditions on the problem guaranteeing & unique solution, and
presume that tnenatrices are large and sparse, so that it is plausible to consider
iterative algorithms. All assumptions are realistic for a wide range of important
applications.

We will also need a number of equivalent formulations of the problem. The
so-called Kuhn-Tucker formulation is the starting point for each of the al-
gorithms we discuss, while the constrained minimization and saddle point
forms is the natural seiting for many physical applications.

The motivating example for our work is the static analysis of engineering
structures: given a large structure subjected to an external load, find the ia-
ternal forces at equilibrium. When the problem is modelled using the force
method (see, for example, (17]), the constraint Ey = b captures the fact that
the forces sum to zero at any node in the structure (the equilibrium condi-
tion). We then look for the unique set of internal forces which minimizes a
type of potential energy subject to this constraint. This application is but one

example of a more general physical principle at work: minimizing an energy
functional subject to an equilibrium constraint is a central idea throughout the
physical sciences (see Strang [34], (35]), so problem LSE in its various equiv-
alent forms has a wide range of applications. We use as a second example a
discretization of a Stokes Flow problem leading to a saddle point system.

Our study of problem LSE and its equivalent forms centers around an al-
gorithm first proposed and analyzed by Barlow, Nichols; and Plemmons [4].
"The derivation of this algorithm, which we call Algorithm BNP, starts with
& repartitioned form of the Kuhn-Tucker equations which has square, non-
singular, and easily invertible diagonal blocks. The authors rewrite this system
by applying block Gauss elimination, producing a symmetric positive definite
sub-problem with the n—-m, leading components of the residual r = ¢ -- Gy as
the unknowns. They then apply a variation of the conjugate gradient algorithm
to this sub-problem, generating at each iteration an approximation to the orig-
inal unknown y. The method is order- or dimension.reducing in the sense
that the sub-problem has fewer unknowns than the original problem in y.

Barlow, Nichols, and Plemmons prove in {4] that Algorithm BNP is superior
to so-calied p-cyclic SOR methods in a certain well-defined sanse. We extend
this result, proving the algorithin is also superior to a two-parameter general-
ization of SOR known as Block Accelerated Overrelaxation or AOR. We
also establish a connection between BNP and a preconditioned version of the
classical weighting method. In addition, we identify and correct a source of
inaccuracy in the original version of algorithm BNP.

Our main purpose, however, is to extend the algorithm to two types of
problems for which Algorithm BNP is not well suited. In theory, BNP requires

2

fairly mild assumptions on problem LSE. In practice, however, implementation
is difficult unless the matrix G has full column rank. This assumption holds for
many but not all applications (it fails to hold, for example, if any of the elements
in the structures problem fails to behave elastically). The algorithm may also
be difficult to apply to problems expressed in saddle point form (e.g. Stokes
" flow). We propose an extension to BNP which can overcome these limitations.

The key to the extension is recognizing a connection between algorithm BNP
and the classical nullspace method. The latter begins with some convenient
particular solution y, to the constraint, and a matrix N whose columns form
a basis for tie nr"space of E. One then seeks a coordinate vector z such that
y = *p+ IVz is the solution to the constrained problem. We show that BNP may
be viewed as a veriation of the uullspace method, in which distinguished choices
of y, and NV are used bt never formed (we will call such a method an impli«it
aulispace method, or INM). The basis matrix V is seen to be acting as &
preconditioner for a set of normal equatinus in factred form. We generalize
algorithm BNP by producing implicit aullspace methods for other choices of
N. The extension preserves the spirit of 3N™ (in particular, the algorithms are
ordez-reducing), but is somewhat more flaxible: it becomes relatively casy tc
construct preconditioners for problems in which G lacks full column rank, as
well a3 problems in saddle point form. Bo'™ BNP and the mo.e general implicit
nullspace algorithms can be implemented i paralle]l when the matrices reflect
a substructuring (domain decompositin) of the physical model.

Chapter 2 provides an overview of the properti~s of problem LSE and its
equivalent forms. We also show how both che structures and Stokes Flow prob-
lems can be expressed in terms of these forms, and discr.ss the special structure

3

of the underlying matrices for substructured problems. Chapter 3 provides an
overview of each of the four basic iterative algorithms we discuss: p-cyclic SOR,
block AOR, a preconditioned form of the weighting method, and of course Algo-
rithm BNP itself. We include a detailed look at the construction of the modified
Kuhn-Tucker equations needed to implement all of these algorithms. In chap-
" ter 4 we compare and contrast the methods: we summarize the results in [4]
concerning BNP and p-cyclic SOR; we extend these results to show that BNP
is superior to block AOR; and we show that BNP can be viewed as the limiting
case of the preconditioned weighting method.

The extension of BNP is the topic of chapter 5: we establish the relation-
ship between BNP and the nullspace method, then exploit this connection to
derive the more general implicit nullspace methods. We then provide a menu
of possible INM algorithms. In chapter 6 we summarize the results of our nu-
merical experiments. We include tests on a variety of structural engineering
problems, including problems which violate the assumptions of elasticity. We
also describe the performance of various forms of INM on a Stokes Flow prob-
lem. In each case, we include results of experiments involving parallel versions
of the algorithms.

We offer some concluding remarks in chapter 7. Finally, in the appendix,
we describe a mechanism which can cause the breakdown of certain types of
incomplete QR factorizations proposed in the literature.

2. Formulation of the Problem

This chapter is an overview of the equality constrained least squares problem.
In §1.1 we mention some of the basic properties of problem LSE, state the
assumptions under which we proceed, and express the problem in four equivalent
forms. The material in §1.1 is largely a distillation of more complete discussions
in Bjorck (7], Golub and van Loan [12], and Strang [35]. The next two sections
include descriptions of two physical applications: the static analysis of structures
(§1.2) and a finite difference discretization of a Stokes Flow problem (§1.3). In
§1.4, we use these two examples to explain the effect of substructuring (domain

decomposition) on the structure of the underlying matrices.

2.1 Problem LSE and Equivalent Forms

Recall from the introduction the statement of problem LSE: given an mixn

matrix E, an maxn matrix G, an myx1 vector b, and an myx1 vector ¢,
minimize ||Gy - c|ls suchthat Ey=b. (2.1)
We make two plausible assumptions before proceeding:

H1: E has full row rank, so b is in the range of E and the problem has at

least one solution; and

Q=

H2: the nullspaces of E and G intersect trivially (or, equivalently, [

| s

Two types of manipulations will prove especially useful. Given any non-

full column rank), guaranteeing that the solution is unique.

singular matrix B, we can replace the constraint Ey = b in problem LSE with
- the new constraint BEy = Bb. This means we can apply Gauss elimination or
orthogonal reduction to E and b without affecting the solution y; we can use
this fact to reduce E to some convenient “canonical” form. Similarly, let Q be
an orthogonal matrix. Then, since premultiplication by Q preserves the 2-norm,
we can replace the quantity (Gy — ¢) in LSE with (QGy - Qc). Thus we can
apply orthogonal rotations (but not Gauss elimination) to the rows of G and
c without affecting the solution. Additionally, we can scale (Gy — c) by any
constant multiple of the identity matrix.

We will also make frequent use of the three equivalent formulations of LSE
described below.

Constrained Minimization Problem. Note that
Gy = ¢|} = yTGTGy - 2yTG%c + e, (2.2)

and that the term ¢Tc has no effect on the value of y at which the quantity is
minimized. With this in mind, define

P(y) = y"G"Gy - 247G, (2.3)

noting that y satisfies problem LSE if and only if y is the solution of the con-

strained minimization problem:

minimize P(y) such that Ey=b. (2.4)

6

Kuhn-Tucker Formulation. Let r = ¢ — Gy represent the residual vector we
seek to minimize. Introduce the m;x1 Lagrange multiplier A (one component

for each constraint), and define the functional

é(y,) = P(y) + \T(Ey - p). (2.5)

Here P is as in equation (2.3). Under assumptions H1 and H2, the solution
y to problem LSE is part of the ordered pair (y,)) defining the unique saddle
point of this functional. One can find this saddle point by solving the so-called
Kuhn-Tucker equations:
b
=|c|. (2.6)
0

E 0 0 Y
G 1 0 r
0 GT ET||)

The first block equation in this system, which is just the constraint Ey =,

results from differentiating ¢ with respect to each component of A, and setting
the result equal to zero. The second eqﬁation simply defines the residual r. The
third equation comes from differentiating ¢ with respect to each component of
y. The Kuhn-Tucker formulation is the starting point for most of the algorithms

of concern to us.

Saddle Point Formulation. Let F = GTG and s = ~G7¢. Note that the
functional P defined in equation (2.3) can then be rewritten as

Ply) =y Fy + 27s. (2.7)
Introduce the Lagrange multiplier 4, and define the functional

¥(y,)) = P(y) - sT(Ey - p). (2.8)
7

Once again the solution to LSE is associated with the saddle point of this
functional; thus one can find the solution to problem LSE by solving the linear
system which defines this saddle point:

EXHEE @

" We chose the signs in the definitions of u, s and ¢ so the matrix E is the same
in all four formulations. The multiplier 4 is related to A in the Kuhn-Tucker
equations by x = =A.

2.2 First Example: Static Analysis of Engi-
neering Structures

The motivating example for our work is the static analysis of engineering struc.
tures: given a physical structure subject to an external load, find the internal
forces at equilibrium. In this section, we use a simple example to show how
to model this problem as a constrained least squares problem. We employ the
so-called force method (see, for example, Heath, Plemmons, and Ward (17},
Przemieniecki (32], or virtually any text on structural analysis). Much of the
material below is a summary of the discussion in section 2.4 of Strang [35).
Consider the truss depicted in figure 2.1. The elements in the structure
are rigid bars. We assume the bars cannot bend; longitudinally, they behave
as if they were very stiff springs, reacting to external loads by compressing or
elongating. Thus, associated with each element i there is a single unknown y;
representing the internal force in that element when the structure as a whole
is at equilibrium. We establish the convention that a positive y; represents an

element in tension.

Figure 2.1: Pin-jointed Rigid Bar Truss

The elements are connecied to each other by pins; the locations of these
pins are called nodes. We assume the problem is modelled so that external
forces act only at the nodes; in this example, there is a single unit force acting
downward on node 5. The nodes at the southwest and southeast corners of
the truss are supported or “grounded” in the sense that pin joints bolt them
to an immobile base (this means we are not free to specify an external loading
at these nodes; the force on a fixed node is that necessary to prevent the node
from moving). The other five nodes are free to move in the 2-2 plane as the
elements lengthen or contract under the load. We assurne, however, that the
displacements at these free nodes are very small. We also presume that the
structure is stable: there are encugh propecly placed elements to prevent the
structure from collapsing on itself, and it is supported in such a way that there
is no set of external loads which causes a rigid motion.

If the structure is at equilibrium, then the forces acting at sach node must
sum to zero (the equilibrium condition). In the example, we therefore begin
by writing a force balance in both the z and z coordinate directions for each of

T
! V2 -2 1w 0]
vZ V2 ¥ 0

1 -1 V2 -2 Y 0
ﬁ‘ﬁ Ys 0

1 V2 -2 w |10

vZ V2 —|o

Vi -2 1 -1 W 0

V3 -2 v 0

V2 =2 1 -1||® 0

-2 -2 1| ho | 1]

[

Figure 2.2: Equilibrium Constraint Ey = b for Pin-jointed Truss

the five free nodes. At node 5, for instance, the equilibrium condition gives us
the two equations

+Ve-Viyr+po-yu = 0 (= direction)

~v2ys = Vi = 1 (s direction)
- We now write the collection of all ten equations in matrix form: each of the five
free nodes contributes a block of two rows (one for each divection in which the
node is free to move), The result is the constraint Ey = b in problem LSE. The
full system for the truss in figure 2.1 appears in figure 2.2,

The vector b stores the specified external force vector. The mairix £, com-
mouly called the equilibriim matrix, holds the non-zero coefficients in the
force balance equations. It captures the shape and connectivity of the structure;
its entries are independent of material properties. The matrix E has one other
important property: if the structure iy stable, then the equilibrium matrix has
full row rank (see Strang (35]). Thus the equilibrium constraint for a stable

(2.10)

10

structure satisfies hypothesis H1. Because each node is attached to only a small
number of elements, E is extremely sparse when the structure is large.

More generally, a finite element model of a structure may be composed of
elements which allow more freedom and complexity than rigid elastic bars (see,
for example, Przemieniecki (32]). Figure 2.3 depicts some typical examples:
a pair of two-dimensional planar elements (in this case, a right triangle and
a square), and a solid tetrahedral element. In these examples we assume the
only independent internal forces are those shown in the sketches, and we take
the corners of the elements to be the nodes. Other more complex models are
possible (e.g. elements which account for the effects of bending, supports which
restrict nodes in some but not all directions, etc.), but we limit our examples
to the types of elements which appear in our test problems.

In any case, regardless of the types of elements in the structure, one still con-
~ structs the equilibrium constraint Ey = b by writing force balance equations
at each free node. Now, however, each element generates a dlock of columns
in the equilibrium mattix E (cne column for each indepencent internal force).
Thus, for example, the equilibriwun matrix for & two-dimensional structure mod-
elled with planar trisngular elements will have three columns per element, and
two rows per free node. The matrix £ will be sparse, and will have full row
rank when the structure is stable. Unlike the matrix in figure 2.2, however, the
equilibrium matrix will often have far more columps than rows (see the test
- problems in chapter €, where m,; ranges from roughly 4 to 4 the size of n,).

OF course, the equilibrium condition does not tell the whole story. Math-
ematically, there will generally be su infinite number of vectors y satisfying
the constraint Ey = b, Physically, we have not yet accounted for the material

1§

Figure 2.3: Typical Planar and Solid Elements

12

properties of the elements in the structure. A symmetric non-negative defi-
nite matrix F, called the element flexibility matrix, captures the material
properties. The solution we seek is the set of internal forces y which mini-
mize complementary energy subject to the equilibrium constraint (see, for
example, Strang (33]):

minimize yTFy suchthat Ey=2b (2.11)

Thus we can express the static structures problem as a constrained minimization
problem. Unless the elements are pre-stressed, the vectors cand s = —=GT ¢ given
in equations (2.1) and (2.7) are zero in this application. The components of the
vector —A in the Kuhn-Tucker formulation represent the small displacements of
the nodes from their neutral (unloaded) positions.

For a truss composed of rigid elastic bars, F is a dizgonal matrixz with
positive diagonal entries determined by Hooke's Law (the entry in position (i,1)
of F is the reciprocal of the “spring® constant for element 4; again, see Strang
{35]). G, of course, is a diagonal matrix with diagonal entries equal to the
square toots of the corresponding entries in F. For more general elements, £ is

a block diagonal matrix, with oae small block for each element in the structure.
The block associated with the right (riangular planar element in figure 2.3, for
example, is the 3x3 matrix

| G S -

Fa-a%[f-‘ﬁ—'l L?l s | (2.12)
l -» "7;-’1 1

where the ;:iysical constants £, v, and ¢ represent Young's Modulus, Poisson's

Ratio, and the thickness of the element respectively (see {32]). The matrix is

pouitive definite for 0 < v < 1 (the value » = 0.3 is typical). The blocks

13

Figure 2.4: Matrices for Static Structures Prchlem

associated with the planar square element and tetrahedral element (5x5 and
6x6 respecvively) are defined by similar formulas. In all cases, the matrix F
is symmetric positive definite when all elements behave elastically. Thus, the
Cholesky factor of F, which is block diagoual with upper triangular blocks,
can be used as the matrix G (figure 2.4). Moreover, since G is square and
non-singular for elastic problems, hypothesis H2 from the previous section is
satisfied triviaily.

At a critical value of v, however, an element no longer behaves elastically,
and the block of F' associated with tne element becomes singular. This critical
value (v = 1 for the planar elements, v = } for the tetrahedron) represents the
point at which an element no longer changes area (or volume) when subjected

to a load (see [32]). At the critical value, the block is still symmetric and non-

14

negative definite. Thus, when such blocks ave present in F, we can still find
43 such that F = GTG, but row the matrix G lacks full column rank. While
the linear theory described above no longer provides an adequate model of the
physics in this case, we will use these critical values to simulate “damaged”
elements in the structure, giving us an opportunity to generate test problems
which are difficult to solve using algorithm BNP as originally derived.

We conclude this section by mentioning that the force method described
above i3 onc of two approaches to solving the static structures problem. A sec-
ond formulation, the so-called displacement method, solves an unconstrained
least squares problem for the displacements, and then recovers the feoce vec-
tor y (see Sirang [35] for a careful discussion of the connection between the
two methods). For many reasons, the displacement method is by far the more
common approach used to solve structures problems. The force method formu-
lation described here, however, has some advantages. In particular, it explicitly
sepa.rat-es calculations involving the geometry of the structure (the constraint)
from those involving the material properties (the energy functional), and can
therefore be useful when analyzing a fixed structure while vatying the material
properties (see, for example, Batt and Gellin {1]).

2.3 Second Example: Stokes Flow

The static analysis of engineering structures provides but one example of a more
general physical principle at work: minimizing an energy functional subject to
an equilibrium constraint is a central idea throughout the physical sciences
(see Strang [34], [35]). A second example, leading naturally to a saddle point

problem, is the standard Stokes model for steady, very viscous flows. If we

15

consider only the constant density case, and scale out the Reynolds number,
the equations describing the flow are given by

V%-Vp = f (2.13)

Vg (2.14)

The quantity p represents the continuous velocity vector, with one component
for each coordinate direction. The scalar p represents pressure. The first equa-
tion comes from conservation of momentum; the vector-valued forcing term f
reflects external forces such as gravity. The Laplacian operator V2 acts on each
component of y separately. The second equation reflects conservation of mass;
in the absence cf sources or sinks, the righthand side g is zero.

We must also specify appropriate boundary conditions. We consider only
the Dirichlet boundary condition y = y, (the case p = 0, which is physically
plausible for viscous flows at a solid boundary, is the so-called “no-slip” bound-
ary condition). Note that only the derivative (gradient) of pressure appears
in the differential equations. Thus, in the absence of boundary conditions on
pressure, we can determine pressure only up to a constant.

When we discretize the continuous problem, we expect to obtain the saddle
point form (2.9). The matrix E will approximate the divergence operator, and
the conservation of mass equation will become the constraint Ey = b, The
vector b will reﬂeqt boundary contributions as well as the forcing term g. The
components of the Lagrange multiplier 4 will represent pressure. Since the
negative of the gradient is the adjoint of the divergence, we will find that ETu
will i.;pp¢. ximate =Vp. The symmetric positive definite matrix F will come

from a discretization of the negative of the Laplacian operator V2, and s will

16

5 horizontal velocity
> specified & center of
arrow

vertical velocity -
sprcified at cunter of
7 arow

Figure 2.5: Marker-and-Cell Discretization of Unit Square {n,=3)

reflect both boundary contributions and the forcing function f.

The test problems in chapter 6 are based on a marker-and-cell «r MAC
finite difference discretization first studied by Harlow and Welch [16] (see also
~ Hall [15]). Here we consider the MAC method for the Dirichlet problem on the
unit square. Let 2 and 2 be the horizontal and vertical coordinate directions, and
begin by dividing the domain into cells as shown in figure 2.5. For simplicity
we consider a regula.t.?pa.rtitioning of the domain: let n, be the number of
cells in each coordinate direction, and A, = 1/n, the horizontal and vertical
length of each cell. We specify the pressure x4 at nodes placed at the center of
each cell. Now connect the pressure nodes with directed line segments. The
components of the discrete velocity vector y ave specified at the midpoints of
these directed line segments: horizontal components of velocity on horizontal
line segments (edges), and vertical components of velocity on vertical edges.

17

Figure 2.6: MAC Stencil: Divergence Operator

Choose a convenient numbering of the nodes and edges. For now, we number
all the horizontal edges before the vertical ones, and we number both nodes and
edges from left to right, beginning at the bottom. Note that the boundary of
the grid does not reach the physical boundary; instead, it is offset by a distance
of h,/2.

We discretize the conservation of mass equation V - g = g by writing a flow
balance equation at each node in the grid, much as we did for the structures
problem in the previous section. Letting the subscripts N, S, E, W, and C rep-
resent the north, south, east, west, and center positions on a stencil (figure 2.6),

centered differences at each interior pressure node produces the equation

(yg = yw) + (yv = ys) = huge. (2.15)

At boundary nodes, one or more values of y are given by the boundary data,
and must be brought to the righthand side of the flow balance equation. For
example, at nodes on the interior of the the west wall of the grid, yw is known,
and the equation becomes

yE +yn = ys = hugo + yw. (2.16)
18

Figure 2.7: Matrix Eq for MAC Grid (n,=3)

If we now write the collection of all such equations as a linear system, we

obtain a matrix equation of the form
Egy = by. (2.17)

The matrix Eq for the case n,=3 is shown in figure 2.7; the pattern for larger
n, is similar. But E, is not quite the equilibrium matrix we seek. We will
produce the matrix E and the associated constraint Ey = b after a modification
described later in this section.

Before completing the construction of the constraint, we address the dis-
cretization of the conservation of momentum equation (2.13). Recognize first
that the equation is a vector equation with components in the two coordinate
directions:

" Vi -—-ps = fi (s component) (2.18)
Viw-p. = f (z component). (2.19)

Here vy and v; represent the z and z components of the continuous velocity

vector u; ps and p, are the derivatives of pressure with respect to z and 2

19

Figure 2.8: MAC Stencil: Horizontal Momentum

respectively; and f; and f, are the components of the vector-valued forcing
term f.

We discretize the conservation of momentum equation by writing a difference
equation at the center of each edge oi; the grid: on horizontal edges, we use the
horizontal equation (2.18), while on vertical edges we use (2.19). Consider, for
example, a typical horizontal edge with associated discrete velocity component
yo. Recalling that the Lagrange multiplier 4 represents pressure at the nodes,
and using the subscripts N, S, E, W, and C as we did above, we work with
the stencil depicted in figure 2.8. Using centered differences, and multiplying
through by A, (not A?), we obtain the equation

1
- ',;:(4310 - YN —Ys — Y& —yw) — (g — pw) = h, fo, (2.20)

where f is evaluated at the midpoint of the edge associated with yo. A sim-
ilar equation results from discretizing equation (2.20) at the center of interior

2

{(a) near east boundary (b) near north boundary

Figure 2.9: MAC Boundary Corrections: Horizontal Momentum

vertical edges.

Because the boundary of the grid and the physical boundary do not coincide,
the treatment of the edges near the boundary is a bit delicate. There are two
cases to consider. The first case involves an edge yc adjacent and perpendicular
to the boundary, svch as the edge near the east boundary shown in figure 2.9a.
This situation presents no special problems: a fictitious edge (yx in the example)
has a known value given by the boundary data. We simply substitute this known
value into equation (2.20) (or the equivalent equation in the vertical direction

if appropriate), ard move it to the right-hand side. For the example we obtain
1 : 1

= 540 —yn = ys —yw) = (b ~ pw) = hofy = -5 (2.21)
] J

The second case involves an edge yo adjacent and parallel to the boundary,
such as the edge near the north boundary in figure 2.9b. Here the fictitious
edge (yn in the example) lies outside the physical boundary, so its value is not
specified by the boundary data. Instead, we know the value at a fictitious edge
yp lying on the boundary midway between yo and yn. We now interpolate to

21

obtain an approximate value for the fictitious edge: yp = 3(y~ + yc), or

YN =2yp - yo- (2.22)

Now substitute yx into equation (2.20) and rearrange to get what we need:

1 2
- 7;(4310 ~¥Ys =Yg ~ yw) — (pg — pw) = hf1 - U (2.23)

Of course edges near corners of the physical domain require both types of cor-
rections.
If we write the collection of all the edge equations as a linear system, we

obtain a matrix equation of the form
~Fy+Elp=s, (2.24)

where Ejy is precisely the matrix defined in equation (2.17). The matrix F

contains two copies of the discretized Laplacian:

Fal|%a

h, Fy] ’ (228)

where Fiy and Fy are associated with the horizontal and vertical edges respec-
tively. More precisely, Fiy and Fy are the block tridiagonal matrices
Dff -1 DY -1
-1 D¥ Fo=| 1 DY

oy tey] . .,
-1 D& -1 DY _,

Fy= y (2.26)

where Dff = DX is the (n, —1)x(n, ~ 1) symmetric tridiagonal matrix with 5's
on the main diagonal and 1's on the sub- and superdiagonals, Dff =... = D¥ _,
is the (n, = 1)%(n, = 1) symmetric tridiagonal matrix with 4's on the main

22

diagonal and 1's on the sub- and superdiagonals, and DY is the n,xn, matrix

F 5 -1 1
-1 4 -1
-1 4 -1
DY = e (2.27)
-1 4 -1
-1 4 -1
! -1 5

fori=1,...,n, — 1. In all cases, I represents the appropriately sized identity
matrix. While it’s helpful to appreciate the structure of the matrix F, in general
it need not be formed explicitly. We can compute a matrix-vector product of
the form Fw in terms of the stencils defining the action of F on an arbitrary
vector w.

At this point, our discretized system has the form

ZALL e

This is certainly a saddle point system, but the matrix Ey does not satisfy the
required hypotheses. Refer to figure 2.7, and note that Eo lacks full row rank
(the sum of the rows of Ey is the zero vector). This is no surprise: since we are
assuming Dirichlet boundary conditions, every edge enters one node and exits
another, so every column of Eq contains a single entry equal to -1, a single entry
equal to +-1, and no other non-zero entries. Up to discretization error, the same
is true of the righthand side vector dy; this is a straightforward consequence of
Green’s Theorem. We need to produce a constraint Ey = b such that E has full
row rank. We can do this in the obvious way, by deleting any convenient row of
Ey and the corresponding component of 8 (more precisely, by annihilating the
row using Gauss elimination or orthogonal reduction)., But we must examine

the effect of this change on the discrete conservation of momentum equation.

23

To do this, recall that the continuous problem determines pressure only up
‘ to a constant. Thus if we specify the value of pressure at any single node, we
should expect to determine the pressure field uniquely. For convenience, set
the last component of u to zero. Let T be the corresponding row of Ey, and
partition Eq and 4 into
Eo.—.[g.] and p=[ﬁ]. (2.29)
Since E u = ET i, replacing E, with E (and p with j) is equivalent to “ground-
ing" a single pressure node to zero. Thus we can safely replace By with E
throughout the saddle point system (2.28). The matrix E bas full row rank, so
hypothesis H1 holds. Morever, F is symmetric positive definite, so there exists
a G of full column rank such that F = GTG. Then, since G has no non-trivial
oullspace, hypothesis H2 holds vacuously.

There is still one important task remaining. We will need the matrix G to
construct one type of preconditioner for the Stokes problem (see chapter 5). The
Chalesky factor of F, however, is far too dense to be practical for this purpose.
Instead, we exploit the fact that the Laplacian operator is the divergence of the
gradieat, We can therefore define GT to be the appropriate discretization of
the divergence acting on the velocity edges of the grid. Since the adjoint of the
divergence is the negative of the gradient, we find that G satisfies F' = GG
a8 required. Using centered differences and techniques described in Strang [35],
we obtain G of the form

1 { Gy
G= ", » [Gv] , (2.30)
where -Gy and -Gy are discrete gradients acting on the horizontal and vertical
edges of the grid respectively. Figure 2.10 dcpicts the matrices for the case n,=4;

2¢

+ -
+a
<+
b -
+ e
+$
‘.
L RS
&>
+ -
L X v
> * e
» ® e
» * o
3
IO *
* - * -
w! ®a
o - -
] - X
Py ~ *
L] - * -
L - ® e
- * o
X
x Gv. -
L -
-
B -
‘ -
. -
_p hd
‘+' = 1 ry -
&.'I = -x ’. -
“w = S 7Y -
u» ' CEEN
e = u\ﬁ *
*
$

Figure 2.10: Blocks of G for the Stokes Problem

the pattern is the same for larger n, as well. It will prove helpful to observe
that the rows of G can be reordered so that the upper block of the matrix is

upper triangular and non-singular.
2.4 Substructured Problems

When working with discrete models such as those in §2.2 and §2.3, the order-
ing of the nodes and elements is an important issue. The choice of crdering
affects virtually every aspect of computational perfermance, including program
complexity, storage requiremants, and convergence of iterative schemes. Here
we discuss a standard way to order the nodes and elements to improve the
cpportunities for parallel computation. The ordering technique, known as sub-
structuring or domain decomposition, involves grouping the components
of the model into contiguous pieces. The literature on the subject is vast; see
Ortega and Voigt [27] for an annvotated introduction.

Coasider, for example, the structure WRENCH depicted in 2.11 (this model
is one of six small test problems developed by M. Lawo [6]). Partition the
mode! into a desired number of disjoiat substructures such that each node is
in exactly one substructure. There are gow two types of elements ia the model.
Most elements (the dark shaded elements in the figure) interact only with nodes -
in & single substructure. Other elements, called transition elements (the
lightly shaded elements in the figure), interact with nodes from more than one
subetructure. Number the nodes and elements in the logical way: all nodes (and
 elements) in substructure A, then B, etc. Defer the transition elements until
last, regardless of their physical location in the structure. For our purposes, it is
neither necessary nor appropriate to use transition nodes in substructuring the

%

Figure 2.11: Substructuring a Finite Element Model

model; see Plemmons and White [31] for a description of the matrices resulting
from such a substructuring.

Because the intetactions between the nodes and the elements determine the
non-zetos in the equilibrium matrix, we find shat the partitioned model leads to
a matrix £ with non-zercs confined to the blocks shown in the figure. Elements
in substructure A, for example, produce non-zeros confined to the “diagonal®
block labelled A, while the transition eleruents produce the trassition block
labelled T in the figure. The mairices F and G, which are block diagonal
with oae small block for each element, retain their structure regardless of the

~ The diagonal blocks in the substructured equilibrium matrix deserve further
comment. Note that each diagonal block of E is itself an equilibrium matrix
for the associated portion of the mode viewed as an independent structure. If
this physical substructure is stable (see §2.2), then the diagonal block has full
row rank; otherwise, it is rank deficent. In the example, substructures C and
D are stable (they are fixed to the immovable base oa the right side, and have
sufficient internal support), while substructures A and B are not (they have no

ar

Substructure A '

TransionBages | | | | | | | |

Substructure B |-

Figure 2.12: Narrow Substructuring of MAC Grid

external support). Thus the first two diagonal blocks in E lack full row rank.

Later, we address ways to exploit the substructured form of the matrix E.
For now, we er phasize that the ideal situation is one in which the diagonal
blocks are all roughly the same size, the number of substructures is the same
as the number of available processors, and the transition block has relatively
few columns. Problem WRENCH is far too small to justify the use of four
substructures in practice; we use it only to illustrate the concept.

The process of substructuring the MAC grid for the Stokes problem is sim-
ilar to what we have just done, but is somewhat more delicate. Begin with
the grid derived in the previous section, and partition the pressure nedes into
substructures (see the left portion of figure 2.12 for an example involving two
substructures; for clarity, we do not include arrows on the velocity edges). Let
the vertical edges connecting the substructures serve as the transition elements
as shown in the exploded view (right half of the figure). This leads to a sub-
structured equilibrium matrix analogous to that derived above, just as one would

28

expect.
This substructuring of the MAC grid is useful for some purposes; we employ

it for one set of experiments in chapter 6. It is deficient in one important respect,
however: for this partitioning of the erdges, the matrices F' and G do not reflect
the substructuring. To see why, first observe that E is an node-edge matrix in
the sense that the rows of E correspond to nodes in the grid, while the columns
of E correspond to edges (see Strang [35]). Thus, a substructured matrix £
results when edges in a given substructure interact only with nodes in that
substructure. The matrix F, on the other hand, is an edge-edge matrix: both
the rows and the columns of the matrix are associated with edges in the grid.
Thus, we obtain a substructured form for F' when edgesin a given substructure
interact only with other edges in that substructure. But the Laplacian stencil
defining the non-zeros due to the horizontal edges (§2.3) causes a problem.
Consider a stencil centered at a horizontal edge on the top boundary of the lower
substructure (figure 2.13; the edges involved in the stencil appear as thick lines
in the magnified view). Note that the stencil involves edges from both the upper
and lower substructures, violating the requirement that the two substructures
do not interact (the vertical stencil causes no problem in this example).

We can solve this difficulty with a simple change. We leave the partitioning
of the nodes unchanged, but include as transition edges those horizontal edges
which are adjacent to a transition zone. Thus, a given transitior zone in the
physical grid consists of a row of vertical edges and two rows of horizontal
edges, as shown in the left portion of figure 2.14. With this choice of transition
edges, the symmetric matrix F' has the structure shown in the right half of the
figure. There is a large diagonal block associated with each substructure; in

29

Figure 2.13: MAC Stencil (Horizontal Momentum) at a Transition Line

____e F=

&\\é“\ @ RN
N “\&‘:\\- k&\\.

Lo 9

Figure 2.14: Wide Substructuring of MAC Grid

fact, each such block is the Laplacian acting on the substructure, and has the
form described in equations {2.25) and (2.26). Additionally, there are horizontal
and vertical strips associated with transition edges. The matrix G, which comes
from a gradient stencil that is a subset of the Laplacian stencil used for F (recall
'§2.3), has a substructured fofm resembling the transpose of the equilibrium
matrix. We will make use of the substructured form of both F' and G in one of
the algorithms we deveiop in chapter 5.

31

3. Description of the Algorithms

In this chapter, we introduce four iterative algorithms for solving problem
LSE: p-cyclic successive-overrelaxation (SOR), block accelerated overrelaxation
(AOR), a preconditioned form of the weighting method, and of course algorithm
BNP. We compare and contrast these algorithms in chapter 4.

Three of these algorithms (p-cyclic SOR, block AOR, and algorithm BNP)
iterate on a certain modified form of the Kuhn-Tucker equations; the fourth
(preconditioned weighting) is closely related to this modified form. We there-
fore begin by constructing the modified Kuhn-Tucker equations (§3.1), and
include a discussion of the computations necessary to achieve this form. We em-
phasize the parallel aspects of the computation, describing a technique called
interlacing proposed by James and Plemmons (20]. We outline each of the
four algorithms in the remaining sections. In §3.2 we detail algorithm BNP as
introduced in {4]. We mention a source of inaccuracy in the original version
of the algorithm (discussed in more detail in chapters 5 and 6), and propose
a simple correction. Section 3.3 is an introduction to the other three itera-
tive algorithms; we emphasize established results which will prove important in
subsequent chapters.

32

3.1 Modified Kuhn-Tucker Equations

It is difficult to apply traditional iterative methods to the Kuhn-Tucker equa-
tions as written in (2.6): the diagonal blocks are not even square, let alone
non-singular. We therefore start by repartitioning these equations. Since we
are assuming E has full row rank, and that [g] has full column rank, we can
reorder the rows of G and ¢, and repartition

16
G= 6, | (3.1)
so that the matrix defined by
_ TR
Al - . G1 ' (3-2)
is square and non-singular. Defining A; = G, for convenience, we now have
E A
[G]:a[A;]. (33)

Make these substitutions in (2.6) and reorder the column blocks to obtain the
modified Kuhn-Tucker equations:

AA 0 K] y b
[A, I 0 [a, =|e |, (3.4)
0 Ag‘ A{ J1 2 0

a " [b A . _[oo
e 2] o= (3] ne] [wer= 3]
Note that the diagonal blocks are now square and non-singular.

We also observe that the ordinary (unconstrained) least squares problem

minimize |Gy - cfla (35)

- may be viewed as a “constrained” problem with zero constraints. We can re-
mduthemwsdGmdcunwy.mdpuﬁtionGz[g;] so that G,

KX}

g
1]

Figure 3.1: Forming A, from trapezoidal E,

is square and non-singular. It then becomes easy to write a set of modified
Kuhn-Tucker equations analogous to equation (3.4): A; consists entirely of G},
b, equals ¢y, and an iden_tity matrix I replaces K. In chapter 4, it will prove
helpful to view the unconstrained problem this way.

In each of the algorithms we consider, we will repeatedly solve systems of
cquations which have A, and A7 as the coefficient matrix. Thus, the key to
using the modified Kuha-Tucker equations is producing an A, which is easily
invertible. The most convenient form tb seek is an upper triangular matrix. If
G has full column rank (a stronger assumption than 12), one way to accomplish

this. depicted in figurs 3.1, is as foliows:

1. Use Gauss El'mination (or orthogonal reduction) with column pivoting to

replace E with the upper trapezoidal matrix
E=[E Er), (3.6)

where Ey is upper triangular and non-singular. Here the subscript ¢ indi-

34

cates “trapezoidal,” while L and R indicate left and right respectively.

o

Apply the same column interchanges to GG, and partition compatibly with
E;. Use orthogonal rotations on G and cto replace G with the non-singular

upper triangular matrix

_ | Ga G2z
[0 o], -

Here the leading subscripts indicate whether the blocks will become part

of G1 or Gz.
3. Define G, = [0 Gy] and G; = [Gy Gp], giving us

E, E
A,:[L G:‘;] (3.8)

While this method of constructing A, is useful for analysis, it may not be
efficient: column interchanges may destroy exploitable structure in the matrices
E and G. Another approach, first proposed by James and Plemmons [20], is
to reduce E without column pivoting to produce a “stairstep” form E, (figure
3.2). Now form A, by interlacing rows of G with rows of E,. A permutation
matrix

P=[PL Pg] (3.9)
defines the interlacing:

E,

Al:P[G;

]=h&+&m. (3.10)

Notice that the same permutation matrix (not its transpose) relates the stairstep

and trapezoidal forms:
ELP=[EP, EPp|=[E, Ep|=E. (3.11)

35

Figure 3.2: Forming A, from stairstep E,

When the matrices £ and G reflect a substructuring of the physical do-
main, interlacing without column permutations is especially helpful for parallel
computations. Given a substructured equilibrium matrix, we can produce the
stairstep matrix E, in parallel by assigning each diagonal block of E to a sep-
arate processor. The only subtle issue is the possibility that a given diagonal
block does not have full row rank. To account for this possibility, we produce

the matrix E, as follows (figure 3.3):
1. Begin with £ in substructured form.

2. Factor each row block in parallel. Terminate computations on a row when

the leading non-zero in that row is in the transition block.

3. Consider all rows which now have leading non-zeros in the transition block.

Mave them (implicitly, using a pointer vector) to the bottom of the matrix.

4. Factor the transition block.

3

),

¢. Move “Transition Rows” to Bottom d. Factor “Transition Rows”

Figure 3.3: Forming Stairstep E, from Substructured E

If column pivoting is needed or desired when reducing E, one can preserve
the structure of E by restricting eligible pivot columns to those associated with
the current diagonal block of the matrix (however one must consider the effect
of such pivoting on both the matrix F and the intermediate fill required to
generate). In any case, one can now complete the construction of A, by
interlacing (figure 3.4) exactly as we did above.

Notice that triangular solves involving A; provide opportunities for block-
based parallelism. One first solves for the unknowns associated with columns
of the transition block (i.e. the final block of unknowns). Once this is complete,
one can recover the remaining unknowns in parallel by assigning each diagonal
block of A; to a separate processor. A similar algorithm applies to triangular
solves with the matrix AT as well.

One triangular solve of each type will occur in each iteration of the algo-

37

Figure 3.4: Forming A; from Substructured E,

rithms we consider; in fact, these solves will account for a major percentage of
the execution time. Clearly the size of the transition block is a key limiting fac-
tor in the parallel performance of these computations. Also important, however,
are the relative size and structure of the diagonal blocks of A,: if these blocks
are of widely varying size or sparsity, the parallel performance of the triangular
solves will suffer.

3.2 Algorithm BNP

The derivation of Algorithm BNP as presented in Barlow, Nichols, and Plem-
mons [4] begins with the modified Kuhn-Tucker equations

A1 0 K y] [5‘
A I 0 ni=lal, (3.12)
0 A A [za 0]

where the symhols are defined in equation (3.4). The authors then rewrite this
system, applying block elimination to reduce it to block upper triangular form.
The result of this reduction is the system

A1 0 K Yy bl
I —AAT ‘K r; | = L AzAl_xh . (3.13)
(AT + ATAL4T'K) Al(AAT b = c3)

Continuing as in {4], multiply the third block equation by A7” to obtaia an
unsymmetric system in the unknown z3:

(T + ATTATA AT K)zs = AT AT (AAT 0 = 3). (3.14)

To simplify this system, temporarily define B = A7T AT A;A7?, noting that
B is symmetric non-negative definite. Then, in termus of B, the system in z3
has the form
{I + BK)zs = d, (3.15)
where d temporarily represents the righthand side in (3.14).
Let
R= [‘}] (3.16)
be the rightmost block of the matrix X, soting that KTK = I and KK7 = K.
Moreover, observe that an arbitrary matrix-mattix product of the form SK is
simply the right block of S, while 7S produces the lower block of S.
Now partition B compatibly with K and K:

B"’[gﬁ g:;]' @

Given this partitioning, equation (3.14) can be written as

[0 (If‘;;”)][]_d. (3.18)

Thus the lower block in the block upper triangular system (3.13) is itself block
upper triangular, and from its lowest block we obtain an equation in the un-
known ry:
(I+Bu)r = K7d. (3.19)
Bj, is symmetric non-negative definite, so (I + By;) is symmetric positive
definite. If we define the matrix

Y = A247'R, (3.20)

then B,; is simply Y7Y, end the system in ry is the symmetric positive definite
system .
(I1+Y7Y)r = &, whete A = YT(A47 0 -). (3.21)
Algorithm BNP solves this system by the coajugste gradient algorithm,
working with the coefficicat matrix in factored form. For this reason, we will
often refer to (3.21) simply as the BNP syetam. There aze n—m; unknowns
in the system, pioviding a theoretical upper bound on the maximumn aumber
af conjugate gradient iterations tequired for convergence. Moreover, as Barlow,
Nichols, and Plemmcas observe o (4], Y may lack full column rank:

Rank(Y) € Rank{K)

- n-m (3.22)
Rank(Y) < Rank(A,)

< min{n,m; +m, - n). (3.23)
This 5!\?6 us |
Rank(Y} < min(n — my,m; 4 mz ~n)
= min(#ofrowsin Gy, #ofrowsin Gy). (3.24)
40

If Y does in fact lack full column rank, then zero is an eigeuvalue of Y?Y
(with multiplicity determined by the rank deficiency), and the coefficient matrix
(I4+YTY) has clustered eigenvalues at unity. This further reduces the theoretical
maximum number of conjugate gradient iteratio: ; required for convergence.

K G is square (as it is, for example, in the engineering application), then
ma=n, and the clustering analysis simplifies somewhat. For m; < jn-1, the
maximum number of iterations is controlled by the column rank of Y, and must
be less than or equal to my +1, which in turn is no larger than in. Form,; > in,
the maximum number of iterations is bounded by the size of the BNP system,
and must be less than or equal to n—m,, which in turn is no greater than $n.
Thus the thearetical upper bound on the iterations is at most 4n, with the worst
cass occurring when m; = in. (At first glance, there is an apparent paradox
here: given an ordinary least squares problem, which has zero constraiats, the
analysis above suggests we should expect convergence in one iteration. But if
we have an ordinary least squares problem with a sguare G, then 4, = G. We
are presuming that systems which have A, as the coeflicient matrix are easily
solved. If this were the case for an ordinary least squares problem, we would
‘have a trivial problem, and there would be no need to iterate at all.)

Of course, our goal is to find y, not just my. In principle, we could iterate until
coavergence to solve for ry, then backsolve through equations (3.15) and (3.13)
to recover the solution y. In practice, kowever, we have another alterpative:
the analysis in [4] shows that a variation of the conjugaic gradient algorithm
applied to the BNPsystemgmuataaﬂthnhthoobtainmatimae
for y at each iteration.

To see why this is 30, first note that K2y = Kry. This allows us to rewrite the

41

first equation in the modified Kuhn-Tucker system (3.12), producing a formula
relating y and r;:

Ay + K =by. (3.25)

Now apply the conjugate gradient algorithm to the BNP system, using an arbi-
trary guess of r{o). Let r{") represent the approximation to r; at the kth iterate,

and use equation {3.23) to define a corresponding approximation to y:
y® = AT} (b, - Br{M). (3.26)

Initialize 4’9 consistent with this definition.
At each iteration of the conjugate gradient algorithm, we will correct the

estimate of r; -a the standard way, using a recursion of the form
o) = M L sy (3.27)

Here s, is a direction vector, and 4, scales that vector to the appropriate length.
Now from equation (3.26), we know that y+1) = AT} (by ~ Kr{F*Y). Substitute

(3.27) iuto the latter expression, and simplify to obtain
y*+l o g8 o, where g = AT K (3.28)

Thus we can update y(*) by a multiple of the direction vector gx in a man-
ner typical of the conjugate gradient method. The scale factor 4, is already
available; we need it to update r'g"). The vectos ¢x also occurs naturally in the
conjugate gradient iteration, so we can produce y*} at each iteration for a fairly
modest cost (one so-called dense vector triad per iteration). Depending on the
number of iterations required to achieve ccnvergence, this cost may or may not
be less than the cost of the single nxn spaise triangular solve needed to deter-

mine y once the iterations are complete. In any case, the difference in the two

42

approaches is not likely to be a significant portion of the overall computational
effort, and both methods have performed with comparable accuracy and speed
in our experiments.

There is one other aspect of Algorithm BNP which differs from the tradi-
tional conjugate gradient algorithm. Let

n=T+YTY)rM -y (3.29)

represent the defect associated with the BNP system (we use the term defect
to avoid confusion with the least squares residual r). Recall that the quantity
vl v is needed within a conjugate gradient iteration to compute various scale
factors; it is also used to test for convergence. If we were to apply the ciassical
conjugate gradient algorithm to the BNP system, we would compute the defect

using an update of the form
Vapt = Ui+ oz, (3.30)

where 3, = (I + YTY)s, is a direction vector, &y is a scale factor, and both
thess quantities are needed elsewhere in the iteration. Barlow, Nichols, and
Plewnmons take a different approach, however. Define

" = ¢ - Ay™ (3.31)

to be the Ath approximation to r;. If we initialize rgm to the value required by
itz definition, we can show by an argument aimilar to the one above that the
iterates satisfy the recursion

rg"“) = rg") - 1Y {3.32)

43

We can now use rg") to compute the defect. Begin by substituting equa-

tion (3.26) into (3.29) to find that
ve=ri +Y7(c - Ay®). (3.33)
Then use the definition of r{¥) given in (3.31) to obtain
ve=r{® YT, , (3.34)

This method of computing the defect requires the same computational effort as
the standard method of explicitly using a scale factor and direction vector.

We summarize the complete algorithm in table 3.1. This particular outline
obscures opportunities to avoid redundant calculations, but will prove useful for
the analysis in chapter 4. See the original paper [4] for a version suitable for
implementation.

Our experiments suggest, however, that equation (3.34) is somewhat un-
stable: we obtained superior results with a conventional update of the defect,
especially on large problems (the BNP method of updating the vector y appears |
to present no difficulties). Apparently the defect gradually drifts from the cor-
rect value, causing the direction vectors and scale factors to become inaccurate,
and resulting in slower convergence. Barlow, in a private communication (3],
hes observed that this is most likely because the independent updates of ry,
r3, and y do not enforce the relatiouships which must exist among these three
quantities. Fortunately, the problem is quite easy to correct (see chapters 5 and
€): a traditional update of the defect improves performance, while preserving
the spirit of the BNP algorithm.

We remark in passing that algorithm BNP has one other interesting prop-
erty, The quantity r{") is defined to be equal to c; — Gyy(®). Additionally, a

4

Table 3.1: Algorithm BNP (Problem LSE)

1. Initialize:
(a) y© arbitrary (cormally y@ = A7th)
(b) #? = RT(b — Aiy®) =4 = G1y® (normally r{” = 0)
(€) 7 = c2 = Ay = ¢2 — Goy®
(@) vo =D +YTr) (v, is the defect (I + YTY)r{® — 1)
(e) so=vo (s is the direction vector)
2. For k =0,1,..., until »Tv; < tolerance:
(a) m = vin/s{(I+YTY)ss
(b)) =) — s,
(c) y*+1) = y® + % AT K ss
(@) AV =) — pYas
(&) vhar =ri*D 4 Y7o

(f) B = VE+1VI.+1 / Vfw,
(8) Sk41 = Vg1 + Brs13k

45

simple induction argument confirms that the vector ¥, the BNP unknown,
satisfies a similar natural relationship: r{¥ = ¢; — Gyy®. This means that the
vector [:%::] is precisely the residual r® = ¢ — Gy(® associated with the kik
appm)dma.ztion to the solution vector y. Of the four basic iterative algorithms

we will consider, algorithm BNP is the only one with this satisfying property.

3.3 -Other Iterative Algorithms

There are, of course, other established iterative algorithms for solving problem
LSE. Two such methods, p-cyclic SOR and block AOR, are parameter-based lin-
ear stationary methods applied to the modified Kuhn-Tucker equations (3.12).
The third, a preconditioned form of the weighting algorithm, is closely related
to the modified Kuhn-Tucker formulation. We introduce all three algorithms
here, with an eye toward comparing and contrasting these methods with BNP
in chapter 4.

Given & non-singular linear system C'z = f, let C = D— L-U define a split-
ting of the coefficient matrix into block diagonal, lower triangular, and upper
triangular parts respectively. The well-known block SOR algorithm (see Young
[38], and Hageman and Young {14]) is then defined by an iteration involving a

relaxation parameter w:
(D = wL)z® = [(1 = w)D + wU) 2™ + wf. (3.35)

If we consider the modified Kuhn-Tucker system (3.12), two plausible choices
of the block diagonal matrix D produce three- and two-block SOR methods

respectively:

A
Da = I and Dz =
AT

A,
A 1 . (3.36)
A

While little is known about the optimal iteration parameter w for arbitrary
linear systems, the coefficient matrix in the modified Kuhn-Tucker system enjoys
some special properties which make a more complete analysis possible. When
the coefficient matrix of the modified Kuhn-Tucker system is partitioned using
either D or Dy, it is a so-called p-cyclic matrix, and the associated SOR algo-
rithms are known as p-cyclic SOR methods. An elegant theory, due largely
to Young [39] and Varga [36], (37}, relates the spectrum of the SOR iteration
matrix to that of the corresponding Jacobi iteration matrix. This p-cyclic the-
ory, combined with special properties of the Jacobi iteration matrices associated
with D, and Ds, leads to a number of important results for p-cyclic SOR applied
to problem LSE. In particular, Plemmons [30] bas established that 2-cyclic SOR
applied to LSE converges for sufficiently small values of w (there may or may
not be values of w for which 3-cyclic SOR converges). Additionally, Markham,
Neumann, and Plemmons [24] have shown that the asymptotic convergence of
optimal 2-cyclic SOR is superior to 3-cyclic SOR. Pierce, Hadjidimos, and Plem-
mons {29], and Eiermana, Niethammer, and Ruttan [10], establish results for
more general problems, demonstrating the importance of the special properties
of the modified Kuhn-Tucker system.

Another approach to solving the modified Kuha-Tucker equations is a two
parameter generalization of SOR known as Accelerated Over-relaxation or
AOR (see, for example, Hadjidimos {13}):

(D~ BL)z**) = (1 =w)D + (w = B)L +wl) 2 +wf. (3.37)

47

Note that the special case w = 3 is block SOR.

Again we consider the blockings given by (3.36), referring to the correspond-
ing algorithms as 3-AOR and 2-AOR respectively. The optimal choice of pa-
rameters for 2-AOR occurs somewhere on the line w = 3 (see Papadopoulou,
Saridakis, and Papatheodorou [28]), so optimal 2-AOR coincides with optimal
2-cyclic SOR. Optimal 3-AOR, however, does not necessarily occur when w = 3.
In fact, Papadopoulou et. al. establish in (28] that under some very restrictive
(and highly technical) conditions, the asymptotic convergence of 3-AOR may
be better than optimal 2-AOR. (and therefore 2-cyclic SOR).

Table 3.2 is an explicit description of the 3-AOR algorithm applied to prob-
lem LSE. Remember that the matrices K and K are defined in equations (3.12)
and (3.21). Technically, we could initialize i) and r{” to arbitrary values. As
defined in the table, however, the initial values are both mathematically plau.
sible and consistent with the BNP iteration (unlike BNP, however, subsequent
iterates do not satisfy " = ¢ — Gyy™ or r{¥ = ¢3 = A;yM). In any case,
our experiments suggest the method is not particularly sensitive to the choice
of initial iterates.

We can solve problem LSE in yet another way, this time by viewing the
problem in an entirely different manner. Let r be a large positive constant, and
consider the ordinary least squares problem

minimize || Wy - bjj,, (3.38)
where W and b are given by
£ s rd
W:[G], b=[c]. (3.39)

48

Table 3.2: Three-Block AOR (Problem LSE)

1. Initialize:
(a) y© arbitrary
(®) {9 = ¢ - Agy®
() r? = e = Gy®
(d) A© arbitrary
@ 4=]]
2. For k = 0,1,..., until convergence:
() 9+ = 470 - Kaf) = A7 (b - K"
) i = - 4 [(1 = Y™ + pytied)]
(© ¥ = 4747 [(1- o) +)]
(d) g+ = (1 = w)y™ 4 wythed)
(e) rg&a) 2 (1 = w)r&"’ +m§&+§)

() £ = (1 = w)el” 4wzt

This is a special case of a so-called weighted least squares problem, or WLS
(see, for example, Bjorck (7], or Golub and van Loan [12]).

Note that '

Wy - bl = 72| Ey - bl13 + |Gy — ¢ll2. (3.40)
This means that any candidate solution y which fails to satisfy Ey =~ b will cause
the quantity ||Wy ~ b||3 to be exceptionally large. Thus, r acts as a penalty
parameter forcing y to come very clase to satisfying the equilibrium constraint,
and we might expect that the solution to this weighted least squares problem
is, to a good approximation, the solution to problem LSE. Given a reasonably
conditioned problem and a well chosen value of , the analysis in Barlow (2]
suggests that this is in fact the case.

This approach to solving problem LSE, known as the weighting method,
has a fairly long history (see Bjorck [7]). Most algorithms based on this method
solve the weighted least squares problem (3.38) by some direct method (e.g.
an arthogonal factorization). Here, however, we consider an iterative approach
based on the factored form of the normal equations

WTwy = W7l (3.41)

Anticipating the likelihood that this system is poorly conditioned, we seek to
precondition the problem.

To construct a preconditioner, ficst note thai the matrix W as defined above
is ndthing more than a scaled version of the ﬁ:azrix [g] which appears ia the
Kuhn-Tucker equations (2.6). Thus, we can reorder and repartition it exactly
as in §3.1. In particular, reorder the rows of G and ¢, and pastition

G
G= [G';] (3.42)

50

so that the matrix defined by

Wi = [&] (3.43)

_{ W
= [W,] . (3.44)
Given this partitioning of W, we can rewrite the normal equations as
(W WA + WTWs)y = WTh. (3.45)
Now precondition with W; in the standard way:

WrT(WTW, + WIW,)W Wiy = W TwT), (3.46)

(I +CTClw =W TWTE, whete C = WY, w= Wiy (3.47)

We can now apply the conjugate gradient algarithm to this system, leaving the
coefficient matrix in factored form. We refer to this method of solving problem
LSE as the preconditioned weighting method, or Pwgt.

Superficially, the system in (3.47) appears to mimic the BNP system (3.21).
Remeimber, however, that this is not a reduced order problem: the size of the
system remains nxn, Still, there is a relationship between BNP and the precon-
ditioned weighting metkod. We will make the connection explicit in the next
chapter.

51

4. Comparison of the Algorithms

In chapter 3, we introduced algorithm BNP as it appears in {4], and outlired
three other iterative algorithms for solving problem LSE: p-cyclic SOR, block
AOR, and a preconditioned form of the weighting method. We are now inter-
ested in comparing algorithm BNP to each of the other three methods.

The relationship between BNP and p-cyclic SOR is already well under-
stood: despite the elegant convergence theory for p-cyclic SOR, BNP is su-
perior in exact arithmetic. This was established by Freund {11} for uncon-
strained least squares problems, and by Barlow, Nichols and Plemmoas [4] for
equality coustrained problems. More precisely, if y(@, ri¥ = ¢; = G3y®), and
) = ¢ ~ G1y'® serve as initial iterates for both BNP and 2-cyclic SOR, then
the iterates at subsequent steps satisfy the inequality

lle = Gybkells < lle = Gyl (4.1
While the authors state their result explicitly only for 2-cyclic SOR, it holds for
3-cyclic SOR as well. This is a corollary to the main result in §4.2, but it is o
surprise: we have already mentioued (see {24]) that the asymptotic convergence
of 2-cyclic SOR is better than the 3-cyclic approach.
In this chapter, we consider the relationship ef algoritbm BNP to the other
two types of iterative methods outlined in chapter 3. Adapting the arguments of
both Freund and the authors of BNP, we extend their work to show that BNP is

52

also superior to block AOR. We prove this for unconstrained problems in §4.1,
and for constrained problems in §4.2. Then, in §4.3 we show that algorithm BNP
may be viewed as the limiting case of the preconditioned weighting method.

Note that all the methods require the same pre-iteration processing (fac-
toring E and F, and forming the preconditioner by augmenting the factored
equilibrium matrix) and essentially the same computational effort per iteration
(twe triangular solves and two matrix-vector products dominate the computa-
tional effort). Thus, comparing the total number of iterations needed to achieve
convergence is a meaningful way to compare the relative performance of these
methods.

4.1 BNP vs AOR: Ordinary Least Squares

Our goal is to establish that BNP applied to problem LSE is superior to block
AOR in exact arithmetic, by proving a result analogous to equation (4.1). Since
optimal 2-AOR coincides with optimal 2-cyclic SOR, it suffices to consider
3-AOR. The proof followa the spirit of the arguments in Freund (11] and Barlow,
Nichols, and Plemmons [4], and proceeds in three steps:

1. Given an ordinary least squares problem (no constraints), we consider
algorithic BNP applied to the problem, and examine the properties of the
iterates.

2. Given tie same ordinary least squases problem considered in siep 1, we
study the properties of 3-AOR applied to the problem, and establish that
algorithm BNP is superior to 3-AOR for this unconstrained problem.

3. Given an equality constrained least squares problem, we construct a re-
lated crdinary least squares problexn. We then establish a relationship be-
tween the iterates generated by BNP applied to the constrained problem
and the iterates generated by BNP applied to the unconstrained problem.
We do the same for 3-AOR as well. Then the results of step 2 allow us to
conclude that BNP is superior to 3-AOR for problem LSE.

We complete sieps 1 and 2 in this section. In the next section, we relate the
constrained problem to an ordinary least squares problem to complete step 3.
To prevent confusion, we use a tilde () over many of the quantities associated
with the uncoastrained problem of this section.

Begin with the ordinary least squares problem

minimize [JAx - 3|}, (4.2)

where A bas full column rank. View this problem as a “constrained” least
squares problem with zeto constraints. The choice of z as the unknown will
prove convenient in the next secticn.

By analogy' with (3.2), reveder she rows of A and b as necessary, and pastition

the coefficient matnix
i .
so that A, is square and non-singular. Pastition the vector
g
§= [5 (4.4)

compitibly. The resulting modified Kuhn-Tucker equations are similar to those
in (3.4), except the identity matrix replaces the matrix K, and there is no

4

Lagrange multiplier:

A 0 Iz b
{A, I 0][7’:]-—-[5,]. (4.5)
0 AT AT | LA 0

Note that BNP and 3-AOR as outlined in §3.2 and §3.3 are perfectly well
defined for this system. To obtain the unconstrained equivalent of the BNP
system (3.21), simply replace K with the identity matrix I, and substitute A4,,
Ay, b, By, 71, 74, and z for Ay, Aj, by, ¢3, 1, 13, 30d y i&pectively. In particular,
by analogy with equation (3.20), note that

Y= Agé;l. (4.6)
The BNP system for the unconstrained problem can then be written
(14 YTY)#, =R, where h = YT(¥], - 5,). (&.7)

Now apply the conjugate gradient algorithm as given in §3.2. For convenience,
we describe the algorithin explicitly in table 4.1.

The AGR algorithm is just as simple to modify, but the absence of 5y changes
its appearance somewhat. See table 4.2 for an explicit description of the algo-
rithm,

We are now prepared to proceed with the proof. In the discussion below, we
use the following notation: if w is a vector, and 5 a set of vectors, then w 4 §
represents the set {w 4 3:9 € S). Similarly, if B is a matrix, then BS is the
set {Bs:a € S} If §iaconvex, so are w+ S and 58, if § is a vector subspace,
BS is a subspace a3 well.

Table 4.1: Algorithm BNF (Unconstrained Least Squares)

1. Initialize:
(a) @ arbitrary (normally (@ = A7'%;)
(b) F9 =3, - 4z (normally 7 = 0)
(c) (0) 52 Agz(")
(d) =D+ PTHD (5, is the defect (+ YTY)#"
(e) 3o =19 (3x is the direction vector)

2. For k = 0,1,..., until #f 5 < tolerance:

(a) %% = T 0w /SE(I + V77)3y
(b) 7 = 7Y - s

)

(c) 2+ = o 4 5, 4725,
) 73 EAZN
)

(d) 7Y = 70
(&) s = r-{"“’ + e

£
(g)

T~

k+
k41 = f’z'+1‘7k+x/ ‘71’5 Uy
k+

- k)

56

Table 4.2: Three-Block AOR (Unconstrained Least Squares)

1. Initialize:
(a) =@ arbitrary
(b) 7Y = & - 4y2®
(c) ”%) = by - Az
2. For k= 0,1,..., until convergence:
(a) o) = A-l(& F(b))
(b) K7 = 5 = &, [(1 - B)a) + pate+]
(© #*9 = -&7A [-)Y + i)
(d) 2 = (1 = w)e® 4 wglt+d)
(e) #"Y = (1 - w)i + wf(k&)
&) #* = (1 =)i? 4wl

57

Let 20, 7% = §, — 4,2, and #{? = &, — A;2(® define a single set of initial
iterates for both BNP and 3-AOR. Define the following vectors in R™:

g = 51 +?T33 (4.8)

vo = fo~ (4 +¥74;)c® (4.9)

o = Arldo (4.10)
= A7'(5 +¥7h)

wo = Af'w (4.11)

o — A7Y(A; + YT 4;5)z,

Additionally, let
B= AWV A, = AV 4, (4.12)

noting that
wo = to — (I + B)z. (4.13)

Finally, define a sequence of Krylov subspaces:

L]

So {0}

Sy = spa.n{wo,ﬁwo,...,ﬁ""‘wo}. (4.14)

Lemma 4.1 (Freund) Let 2, #% = §, - A;2, and #0 = §, - 4,20 be
initial iterates for algorithm BNP applied to the ordinary least squares problem
(4.2). Then the kth iterate z(¥) lies in the set (D +S). Moreover, z(*) minimizes
the residual ||fl|s = ||b - Az|z over all z in 2 + S,

Proof. See [11]. ©

Theorem 4.1 Let 2@, 7% = 8 — A;2®, and 70 = §; — 4,2 be initial
iterates for both BNP and 3-AOR applied to the ordinary least squares problem
(4.2). Let 2% and z8), represent the kth iterates generated by the two algo-
rithms respectively, and define A0 0 =b— Azl p and #Bp =1~ Az g to be

the associated residuals. Then the iterates satisfy the inequality
~(k ~(k+1
[Fsnells < IF4GR la
in exact arithmetic, regardless of the AOR iteration parameters.

Proof. By Lemma 4.1, it suffices to prove that the AOR iterate z{{35 lies in
z(® 4 Si. Suppressing the “ACR” subscripts for simplicity, we accomplish this
by establishing the following relationships:

(a) z¥ € 2@ + 5,4
(b) b= € Az + S1.1)

(c) By - 7" € Ay(c® + $iy)

(d) By + P € 5 = PTAy(2 + Sioa)
(e) by + Y770 € dg — YT Az (2@ + Sicy)

(1) 51~ € by — PTAy(a® + Sica)

() b -7 € A;2© + span {vo} + A7 TSk
(h) 2+ g 20 4 5,

Our goal is to establish the first of these relationships; the others are means

toward that end. We argue by induction. Listing the early iterates explicitly,

59

we have:

23 = O
PO
S)
20 = O
A = O
F) = 7Y —wy

z(l"'*) = z(°)+wwo.

Use these values to confirm that each of the inductive hypotheses holds for
k = 1. Now assume all eight hypotheses hold for a fixed k, and consider & + 1.

Proof of (a): Since £(% + S, is contained in (9 4 S}, inductive assumption
(a) tells us that 2 is an element of z(® + S,. By assumption (h), z(+)
is also in this set. Thus, by convexity, z(¥*1) = (1 = w)z® + watk+d) is in

2 4 S, as required.
Proof of (b): Equation 2(b) of table 4.2 tells us that
ba— A = 4 [(1 - £)a® + D).

By assumption (a), we know A;z(® is contained in A3(z(? + Si-,), which
in turn is a subset of Ay(z® + Si). Moreover, 4,z(k+%) is in the latter
gk-i-&)

set by inductive assumption (h). Thus, by convexity, b; — # is in

Ay(z® + S)) as required.

80

Proof of (¢c): From assumption (c) and the containment argument used above,
we have that b, - #" is in 4;(z(+ S;). The proof of (b) tells us that

b fg *+1) 5 in the latter set as well. Rearrange equation 2(e) of table 4.2
.(k+§)

to see that §; — “‘"’l) is a convex combination of §; — 7 and &; —
and so is in A;(z(® + S)) as required.

Proof of (d): From the definition of g in equation (4.8), and the definition of
i‘gﬂ'*) in table 4.2, we find that

b+ PTAD = 0— YT4, [(1 - B)2® + g2t

Assumptions (a) and (h) combined with convexity then give us the re-
quired result.

Proof of (¢) and (f): Similar to the proof of (c).

Proof of (g): By assumption (g), there is a scalar o, and a vector z, in Y7 4,54,
such that
b -7 = 4ie® + avo + 21,

By the proof of (£), there is a z; € Y7 4,5, such that

b~ -(h+§) =ty T Az 4 2,

Let z = (1 ~ w)z; + w2y, and note that = € YT A;5,. Rearrange equation
2(f) of table 4.2 to obtain

b= A = (L=)b =) + (b - A,

Remembering that vy = 6o — (4 + Y7 A4;)z00), use the expressions for
by — 7" and B = A" to find that

b =AM = 4,29 + a(l - w)ue +wug + 2,

61

which is in A;2(® + span {ve} + YT A3S; as required.

Proof of (h): From table 4.2 we have z(++1+]) = A71(F, — #{**1)). By the proof
of (g), there exists a scalar 4 such that

B - 7 € Aiz® +quo + YT A5

Recalling that wo = Alvo, these two facts tell us that z(*+1+4) js in
the set z(® + qwy + A7'¥TA;S5.. But wo is an element of iy, and
A;YYT A, S, = BS, which is a vector subspace of Si;;. Hence z(k+1+d)
is in {9 4 Si41 as required. O

4.2 BNP vs AOR: Constrained Least Squares

In the previous section, we proved that in exact arithmetic, BNP applied to an
unconstrained least squares problem converges at least as fast as 3-AOR. To
extend this result to constrained least squares problems, we establish a connec-
tion between problem LSE and a specially constructed unconstrained problem.
The argument below is an adaptation of Theorem 2.1 in Barlow, Nichols, and
Plemmons (4], and is based on a special case of the classical nullspace method
(see §5.1).

Consider problem LSE as given in equation (2.1), and the associated modi-
fied Kuhn-Tucker equations (3.4). Define the matrix

N=AD'K = A [(}] . (4.15)

Observe that
E - - 10
[G‘]Al‘:‘A‘At‘m[O I]. (4.16)

62

This means EA]! = [Io0] , 80 EN = 0. Moreover, N has n—m;, linearly
independent columns, so the columns of N form a basis for the nullspace of E.

By a similar argument, the vector
b =A7 (4.17)

is a particular solution of the constraint Ey = b. Note that any vector satisfying
the constraint can be written as y = y,+ Nz for some choice of z, and minimizing
|Gy — ¢l|3 subject to the constraint amounts to minimizing ||G(y, + Nz) — ||z
over all possible z. The latter minimization is an unconstrained problem of order

n—m;. Isolating the unknown z, we have the ordinary least squares problem
minimize [|Az ~8|; where A =GN, b=c~ Gy, (4.18)

Referring to equation (4.16), we find that

{ewn][1
aNa[G’Nl_ly], (4.19)
where Y = A, A7 K is as in the BNP system (3.21). Additionally,

Giyy = GLAT b = KT [(b:;] = G, (4.20)

80 ¢y = Gy, = 0. All of these relationships give us an elegant form for the mod-
ified Kuhn-Tucker system associated with the ordinary least squares problem
given in (4.18):

. (¢.21)

In terms of the notation from the previous section, we have

A =1 | (4.22)
Ay =Y (4.23)
h =0 (4.24)
b = c3— AAT . (4.25)

Now let y(@ be an arbitrary initial iterate for both BNP and 3-AOR applied
to problem LSE. There is a unique (% such that y® = y, + Nz(®; in fact, the

correct value is given by
2 = RT(Ay® - &,). (4.26)

Use this value of (9 as the initial iterate for BNP and 3-AOR applied to the
ordinary least squares problem (4.18). We now define tue corresponding initial
residual iterates, and relate the subsequent iterates for the constrained problem
to those of the unconstrained problem.

Lemma 4.2 Lety©@, r{¥ = ¢;— Ay, and) = ¢y~ GLy® be initial iterates
Jor BNP applied to problem LSE. Define 9 as in equation ({.26), and let z(®,
A = B = 4,29, and 70 = B, — 4,20 be initial iterates for BNP applied to
the related ordinary least squares problem defined in equations ({.18) through
(4.85). Then subscquent iterates safisfy y® =y, + Nzl¥),

Proof. Refer to tables 3.1 and 4.1. Remembering that a tilde (") represents
a quantity associated with the ordinary least squares problem, we prove by
induction that y® = y, + Nz®, r{? = &9 oY = #{% v, = 5,, and 50 = 5s

for all k.

First consider k = 0. We know y©® = y, + Nz(® by the definition of (.
Since A, = I and §; = 0, we have 7, = —z(?, which is —KT(A;y@ - b,). But
RTA; = G, and BTh, = ¢, se 7 = ¢ — G1y(®, which is rl”) as required.
Additionally, simple substitution tells us that 1'-§°) is 3 — Ag(y, + Nz@). This
i8 ¢ = Agy'®, which is r\) as required. Finally, note that the initial defects and
initial direction vectors satisfy wy = i and s = §p trivially.

Now assume y(® = y, 4+ Nz®, p{ = #®) o0 = #¥), = 5, and o4 = 5
are all true for a fixed k, and consider k+1. When BNP is applied to the
ardinary least squares problem, we have ¥ = A;A7* = Y. This, combined with
the inductive assumptions, gives us v, = 4, immediately, from which we get
r&*'") = ig"‘”), r{““) = s“{““), and vig1 == Jay1. We can then conclude that
Brer = Brqa, from which we obtain 8441 = 3441 a8 required.

Finally, we know y(#+1) == y(&) 4 5, A7 K's;. Recalling that A, = I, we have
AP'K = A7'N. Moreover, 8, = 3, and y{® = y, + Nz(® by hypothesis. So
gy = g N(z® 4 134715,), which is g, + N2+ as required. O

Lemma 4.8 Let y@, rlY = ¢y = Ay, o = ¢, = G1y®, and A©@ be initial
iterates for S-AOR applied to problem LSE. Define 2 as in equation (4.26),
and let 20, &A% = b - 43219, and #? = B, — 4,2 be initial iterates for
3-AOR (with the same choice of w and §) applied to the related ordinary least
squares problem defined by eguations ({.18) through ({.85). Then subsequent
iterates saiisfy y¥) =y, + Nz¥),

Proof. Refer to the description of the algorithms given in tables 3.2 and 4.2.
We establish by induction that y™ =y, + Nz, rl? = &Y and ¥ = #{¥,
The case k = 0 is in the proof of Lemma 4.2,

65

Now assume y® = y, + Nz®, #{? = #Y, and r{ = #» aze true for a fixed
k, and consider k + 1. Since 4, = I and b = 0, we know that z{+}) = —7{")
for all k. By the inductive assumptions, this means z(*+} = —r{¥), Af
ter this substitution, the defining equation y(++#) = A;1(b; — Br{Y) becomes
y&+d) = g 4 Nz(+1), We also know that y® =y, + Nz by inductive as-
sumption. Thus, we find that the equation y*+1) = (1 — w)y(®) 4 wyl*+d) be-
comes

O < gy 4 (1= 4 s,

which is y, + Nz(+)) as required.
We obtain r{**") = #{**)) by a straightforward substitution. Qbserving that
r¥) = BTz, a simple substitution produces r{**") = #{*+1) 45 well. O

Lemma 4.4 Lety@, r{? = ;- Ay @, and i = ¢, = Gyy!® be initial iterates
for either BNP or $-AOR applied to problem LSE (the choice of Al in 3-AOR
is immaterial). Define 21 as in equation (4.26), and let =@, 7% = §, ~ 4,200),
and #¥ = §, = A,z be initial iterates for the same algorithm applied to the
related ordinary least squares problem defined by equations ({.18) through (4.25).
Then the residuals ¢ ~ Gy™ and § — Az™ are equal.

Proof. By Lemmas 4.2 and 4.3, we koow that y® = y, + Nz, This means
that ¢ — Gy = (¢ ~ Gy,) = GNz®). But GN = A and ¢~ Gy, = b by (4.18),
30 the result follows. O

Theorem 4.2 Let @, £ = ¢; — Ay, and ¥ = ¢, = G,y @ be initial it-
erates for BNP applied to problem LSE. Let the same quantilies with an ar-
bitrary A®) serve a3 initial iterates for -AOR. Let y},",{,,, and y{} g represent

66

the kth solution iterates generated by the two algorithms respectively, and define
rg'}” =c- Gyg'},p and rffc), R=C— Gy% Rr to be the associated residuals. Then

the iterates satisfy the inequality

k k41
IrEeplls < IraR 1l
in ezact arithmetic, regardless of the AOR iteration parameters.

Proof. Apply BNP and 3-AQOR to the related ordinary least squares problem
defined by equations (4.18) through (4.25). By Lemma 4.4 we have

rhhp =8~ «‘L"g}w
rlias) = 8- Az 3N,
The result then follows from Theorem 4.1. O
While the theorem applies to calculations performed in exact arithmetic, it
suggests that BNP should outperform 3-AOR oa problem LSE. Our numerical
experiments (ses chapter 6) suggest that this is in fact the case.
Finally, we obtain as a corollary the fact that algorithm BNP is superior to
optimal 3-cyclic SOR. Since we know that optimal 2-cyclic SOR is asymptot-

ically faster than 3-cyclic SOR for problem LSE, this merely formalizes what
one would expect.

Corollary 4.1 Let 3@, v = ¢; = Ay®, and r{? = ¢ = Giy!® be initial
iterates for BNP applied to problem LSE. Let the same quantities with an ardi-
trary A serve as initial iterates for S-cyclic SOR. Let yiihp and y§il o represent
the kth solution iterates generated by the two algorithms respeciively, and define

67

rinp = c— GyShp and r)p = 2~ Gy® o to be the associated residuals. Then

the iterates satisfy the inequality

lrEkpllz < lrécRla
in ezact arithmetic, regardless of the value of w.

Proof. The result in theorem 4.2 hold regardless of the AOR parameters. In
particular, it holds far the special case w = 8, which is 3-cyclic SOR. O

4.3 BNP and Preconditioned Weighting

It is at least mildly surprising that algerithm BNP is also closely related to the
preconditioned weighting method deacribed in §3.3; we detail the coanection in
this section. The analysis holds when the preconditioner W, is formed by inter-
lacing, but the permutstion matrices used to define the inteclacing nanecessarily
complicate the notation. For that reason, we procesd using the augmentation
technique based on the trapezoidal matrix E, (§3.1). _

Following the notation in §3.3, we begin with the matrix W= [G
b

the vector b= [.] . We then apply the conjugate gradiest algorithie to the
factored liear system

rE] and

(I+C7CYyw = WTWT), (4.27)

where W, = [TGE‘] and ¥ = (3 are the upper and lower blocks of W respec-
tively, C is the matrix WiW,, and the vector w = W,y is the new unknown.
Recall from §3.3 that W; is non-singulas.

Now let E be the trapezoidal matrix B, = | By Er | defined in oqua-
tiou (3.6). If we form W, and W; using the augmentation technique described

68

in §3.1, we obtain

where G is given by

In this cass, the righthand side Wy TW7H becomes
W‘TW’% [] +C TC:

We can pow explicitly calculate the inverss of Wi:

w- = | YBi' —Ef'EaGu
1 G!‘Ql

YTV . (T4 YTY)
where
- 'w&]

w
vV IO S

i
.‘? ¥
t:
[

-

== L 4

s

|

This in turn allows us to rewrite ihe preconditioned system (4.27) as
[(I ++3VTV) +yTY] [wg] _A

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)
(4.35)
(4.36)

and Y is as ip equation (3.20). In the limit as 7 — oo, the coeflicient matrix is

[I (I+Y“'Y)]’

(4.37)

Loosely speakigg, therefore, one would expect the conjugate gradient method

with the coefficient matrix given in (4.33) %o perform as if the matrix was “al.
most” block diagonal. The algorithm should produce wy, in a very small number

69

of iterations (the associatel diagonal block is nearly the ideniity matrixj, and
it should act like algorithm BNP on the lower block of the system. In a sense,
then, BNP may be viewed as the limiting case of the preconditioned weighting
method. This is true despife the fact that PWgt solves an nxn system rather
than a reduced order problem. In the limit as r — o0, the m; leading unknowns
in the PWgt system are determined by what amounts to a trivial linear system,
and the method acts as if it were an order-reducing algorithm applied to the
lower (n—~m,) unknowns.

Whenr formalizing the connection between the two schemes, however, there is
one subtle point to note. It is tempting to start with the block system in (4.33),
delete terms involving negative powers of r, and expect to recover algorithm
BNP. It would quickly become clear that this does not work.

The problem is this: while the lower left block of the coefficient matrix is
O(7-1), the vector wz, is O(r). Thus the product of these two comporents is

O(1) and cannot be ignored. To see why this is so, recall that w = Wiy by

[z;] = [T(fi‘]y. (4.38)

fu

definition, which means

Thus
wr = rEy = 1), (4.39)

and there is no need to compute wy, at all.
But there is also a natural interpretation of the lower block wg. From (4.38)

as well as the definition of r; given in equations (2.6) and (3.4), we have
wp=Gy=¢q-n. (4.40)

Now, armed with a clearer picture of what the blocks in w vepresent, we can

7

use {4.39) and (4.40) to produce algorithm BNP from the weighting method.
Begin with the second block equation in (4.33):

-i-YTGnEgle +(I+YTY)wg = o + Yo, (4.41)
Now substitute {4.39) and (4.40) into this equation, and rearrange to obtain
(I -+ YTY)rl = YT(Y61 + GzlEflb - Cz). (4.42)

Note that the substitutions have eliminated r entirely; in fact, minor simplifi-
cation of the righthand side produces the BNP system (3.21).

Of course, the BNP unknown and righthand side are different than those
for the preconditioned weighting method, so we can expect some variation in
relative performance from one problem to another. Moreover, each method has
its own advantages and disadvantages. BNP, for example, is a “parameter-free”
algorithm, while PWgt requires the user to specify r: if r is too small, the
solution to the weighted problem will be a poor approximation to the solution
of problem LSE; if r is too large, then underflow, overflow, or roundoff errors
will degrade accuracy or prevent normal termination. A single PWgt itera-
tion, on the other hand, is generally slightly faster than a corresponding BNP
iteration: BNP requires gather/scatter vector operations (multiplications with
permutations 6f K and K7T) that are not needed in the weighting algorithm. We
demonstrate in chapter 6 that the algorithms do indeed perform comparably,

but that neither is clearly superior to the other.

71

5. Implicit Nullspace Methods

Algorithm BNP as originally proposed has at least two limitations we wish to
overcome. The first concerns the conditions under which we can successfully
construct a suitable preconditioning matrix A;. Theoretically, assumptions H1

and H2 in §2.1 are sufficient: if £ has full row rank, and [g] have full column

rank, then one can find rows of G to construct G; so that 4, = [gl] is
non-singular. In practice, though, it may be quite difficult to determine the
correct rows of G to use [5]. Moreover, even if we can identify suitable rows of
G, the resulting A; may not be easily invertible.

As long as G itself has full column rank and relatively simple structure, we
can successfully produce an upper triangular A, by interlacing (§3.1). Suppose,
though, that G lacks full column rank. Then, given a specified column of G,
there may be no row of G with leading non-zero in that column, even after
orthogonal reduction. If we need such a row to augment the stairstep matrix
E,, we will not be able to produce an upper triangular A; by interla'cing.

Even if G has full column rank, we may encounter difficulties forming A,
by interlacing. Suppose it is impractical to reduce G to upper triangular form
(this is true, for cxample, in the Stokes problem described in §2.3). In this case,

interlaciug can only succeed if the unreduced (or partially reduced) matrix G

has rows with leading non-zeros in all columns in which E, does not have leading

72

non-zeros. Fortunately, G as given in §2.3 bas rows with leading non-zeros in
every possible column, but this is merely a consequence of the simple geometry
we chose for the domain.

The second difficulty concerns problems expressed in the saddle point form
given in (2.9); again, the Stokes model is a good example. Here the vector c,
which is needed to form the righthand side of the BNP system (3.21), is not
generally available; instead, the vector s = ~GT ¢ is specified. Depending on the
structure of G (if G is even known), it may or may not be practical to determine
c explicitly.

One way around this obstacle is to attempt to rewrite the righthand side
of the BNP system in terms of s rather than ¢. But this is not possible for
the problem as formulated in (3.21), because the righthand side lacks a critical
term involving ¢, (the term is buried in the unknown ry). Another approach, of
course, is to use a different algorithm. The preconditioned weighting algorithm
is one possibility, and a little algebra does allow us to rewrite the righthand side
of the PWgt system (3.47) in terms of s rather than ¢

wTwT [ch] = [;”] - WTs. (5.1)

But even this doesn’t overcome the difficulty completely. We still need to con-
struct W) as defined in (3.43), and this requires having G in a form suitable
for use in the interlacing scheme. We would like to produce an order-reducing
conjugate gradient algorithm which can solve saddle point problems in which
neither ¢ nor G is readily available.

In this chapter we extend algorithm BNP to a class of methods capable of
dealing with each of these difficulties. Qur approach is based on the classical

7

nullspace method, which makes use of a matrix N (the basis matrix) whose
columns form a basis for the nullspace of the equilibrium matrix. The technique
used in §4.3 to relate problem LSE to an unconstrained problem is a special case
of the nullspace method. |

In §5.1 we describe the nullspace method, and show that algorithm BNP may
be viewed as a variation of this method for a certain distinguished choice of the
basis matrix. In BNP, however, the basis matrix is used but never explicitly
formed; thus algorithm BNP becomes an example of a class of methods we call
implicit nullspace methods. We describe in §5.2 a technique for producing
implicit nullspace methods for other choices of the basis matrix, and outline
a general algorithm suitable for implementation. Then, in §5.3, we propose
specific examples of implicit nullspace methods, emphasizing ways to overcome
the difficulties described above. In the next chapter, we will report on experi-
ments with each of these methods, using test problems based on both the static

analysis of engineering structures and Stokes flow.

5.1 BNP as an Implicit Nullspace Method

The original derivation of algorithm BNP, reported in (4] and detailed in §3.1,
involves applying block elimination to the modified Kuhn-Tucker equations. In
this section, we derive the method in a new way, establishing a connection
betwewn algorithm BNP and the classical nullspace method (see, for example,
(7), (31]). This nullspace characterization of BNP, first reported in James and
Plemmons (20}, leads to the extension we describe in §5.2.

We begin with a description of the nullspace method itself. Suppose we are

given a convenient particular solution y, to the constraint Ey = b, and a

4

matrix N whose columns form a basis for the nullspace of E (for convenience,
we will call N a basis matrix). Then any vector satisfying the constraint can
be written as y = y, + Nz for some choice of z, and minimizing ||Gy — ¢||;
subject to the constraint amounts to minimizing ||G(y, + Nz) — ||z over all
possible z. The latter minimization is an unconstrained problem of order n—m;.
Forming the associated normal equations confirms that the required z solves the
symmetric positive definite system

NTGTGNz = NTG*(c - Gy,). (5.2)
Now let E be the upper trapezoidal matrix E; = [Er, Egr] given in (3.6).

we| 5] (5.9

is a particular solution of the constraint E¢y = b, and the columns of

Note that

-E;1ER] (5.4)

Nr= [1
form a basis for the nullspace of E;. Now write the nullspace normal equations

(5.2) with these choices of the basis matrix and particular solution;
NTGTGNiz = NTG¥(c - Gy,). (5.5)

Note that we can apply the conjugate gradient algorithm to these normal
equations without forming N; explicitly: an arbitrary matrix-vector product
involving Ny requires only a triangular solve with Ez, and a matrix-vector
product with Eg. Thus, this approach to solving problem LSE is the simplest
possible exampie of what we call an implicit nullspace method, or INM: we

solve tae nullspace normal equations using a distinguished choice of the basis

(£]

matrix IV, but do not actual form this matrix. In the next section, we develop
a more general version of algorithm INM.
Now precondition in the standard way with G5, where G;; is the lower

righthand corner of the upper triangular matrix G as defined in (3.7):
GiI NTGTGNGi}w = Gif NTG¥(c - Gy;), where w = Gizz. (5.6)

Notice that this preconditioned set of normal equations is itself an example of
an implicit nullspace method: since N; is a basis matrix, so is N;B for any
non-singular B. Thus, the linear system (5.6) reflects N = N;G7; as the choice
of basis matrix. In fact, we can say more about this system. The formidable
looking coefficient matrix simplifies nicely, and it will lead durectly to the BNP
system.

First recall the technique used in §3.1 for augmenting the trapezoidal matrix
E. The matrix A, is defined to be

E, E
A;.—_[L Gg] (5.7)

The inverse of this version of A, is givea by

-1 -l rel
A= [Bi* -Ei %G] , (58)
1
which in turn tells us that
_f=t
ATK = [ELI Er] G = NiGy;. (5.9)
Thus Y = A3A7 K can be written
Y= GgNlGﬁl. (5.10)

16

Now return to the normal equations given in (5.6). From equation (4.16) we

know that G1A7!K = I. This, combined with (5.10), gives us

GN/G;) = [g:] AR = [l’,] . (5.11)

Therefore, the coefficient matrix in (5.6) is I + Y7TY, which is precisely the
coefficient matrix in BNP.

While the BNP system (3.21) and the preconditioned nullspace system (5.6)
involve different unknowns and righthand sides, we can interpret the unknown

w in a way which completes the connection between the two methods. Partition

y= [;’g] (5.12)

compatibly with the rows of N, and use the fact that y = y, + N:z to find that
Z = yr. Thus, the defining equation w = Gy32 can be written

w= GnyR = Gw. (513)

But ry = ¢; —~ Gy by the definition of ry. Thus we obtain a relationship between
the BNP unknown », and the unknown w in the nullspace normal equations:

w=c-r. (5.14)
Use this fact to rewrite (5.6) as
(I+YTY)(er =) = GiF NTG¥(c - Gy). (5.15)

Finally, move ¢, to the right-hand side and simplify: the result is the BNP sys-
tem as given in (3.21). Thus algorithm BNP is essentially an implicit nullspace
method, with N = N;G7} as the (unformed) basis matrix. While we have shown

7

this only for the simple augmentation of the trapezoidal matrix E, the conclu-
sion also holds when using interlacing to augment the stairstep matrix E,.

The only significant distinction between the BNP system (3.21) and the
system in (5.15) is the fact that the two systems involve different unknowns
(and, of course, different righthand sides). In the next section, we will see
that this change in unknown is exactly what we need to produce an algorithm
suitable for saddle point problems.

5.2 Algorithm INM: General Case

In the last section, we began with a certain natural basis Ny = [-E‘-}x Er] for
the nullspace of the trapezoidal equilibrium matrix E;, and demonstrated that
algorithm BNP can be viewed as an implicit nullspace method with N = NG}
as the basis matrix. We also observed that N = N;B is a basis matrix for
any noa-singular matrix B. The basic idea behind the extension of BNP
should now be clear: instead of using G;7 as a preconditioner for the nullspace
normal equations given in (5.5), precondition (5.5) with any convenient non-
singular (n—m,;)x(n-m,;) matrix B, producing an implicit nullspace method
with N = N;B as the basis matrix. But so far we have oaly considered the
trapezoidal matrix E, obtained by column pivoting. To make this approach
practical, we would like to use interlacing to construct a basis matrix and par-
ticular solution for the stairstep matrix E,.

Recalling equation (3.11), let P = [P, P] be a permutation matrix

relating the trapezoidal matrix E; and the stairstep matrix E,:

EP=[EP, EPp|=[E, En]=E. (5.16)

78

Now let M; be a matrix of size (n—m;)xn such that the matrix B; defined by

B= [fl:] (5.17)
is non-singular; we will call such an M; an augmentation matrix. It is quite
easy to construct an M; with this property: use rows with leading non-zeros
in the (n—m,) columns in which the stairstep matrix E, does not have leading
non-zeros. Think of M; as generalizing the role that G; plays in BNP. In the
special case E, = E;, we would have M; = [0 M,] , where M), plays the
role of Gy;.

Finally, by analogy with A, in equation (3.10), apply interlacing to produce
an upper triangular matrix defined by

B‘=P§1=P[AE{:]. (5.18)

We are now in a position to define the basis matrix N and the particular
solution y,.

Theorem 5.1 The vector y, = By''P [z] ‘sadisfies the constraint £,y = b for
any choice of v.

Proof. Note that B = By PT, where B, is defined in equation (5.17). Also,
by an argument similar to equation (4.16), we find that E,B;! = [10] . Use
these two facts to establish the result:

. b - [b
E.y,:E,B,‘PTP[U]=E.B,'{]:[1 o][v],

v
which is b as required. O

The choices v = 0 and v = ¢; are particularly convenient when using the
- results of Theorem 5.1 to define y,; both are present naturally when initializing

quantities in advance of forming B,.

79

Theorem 5.2 The columns of N = B{'Pg form a basis for the nullspace of
the stairstep matriz E,.

Proof. N is the proper size and has full column rank, so we need only establish
that EN = 0. Recall from the proof of Theorem 5.1 that B! = B{*PT and

EB = [I°0] . Also note that PTPr = [(}] by orthogonality. So

EN <= E,B{*Pg = E,B[*PT Py = [10] [‘}] ,

which is zero as required. O

These two theorems give us what we need to describe the implicit nullspace
method in a general setting: we implement the algorithm by applying the con-
jugate gradient method to the factored nullspace normal equatioas (5.2), with
N and y, as above. Table 5.1 summarizes the algorithm. In the table, s; is the
conjugate gradient direction vector, and d; = NTGT(c ~ Gy,) - NTGTGNz(®)
is the residual associated with the normal equations. The vector g, stores the
product of the coefficient matrix with the direction vector. We use a starting
vector of 2{9 = 0 (which gives us y© = y,), but an arbitrary starting vector
presents no difficulties.

Unlike BNP, algorithm INM is simple to modify for problems in saddle point
form (2.9): when c and G are not available, simply substitute s = —G%¢ in the
nullspace normal equations (5.2) to obtain the new righthand side

h = ~NT(s+ Fy,). (5.19)

Also note that it is easy to preserve the opportunities for block-based parallelism
discussed in §3.1: given a substructured problem, we need only construct M,

80

Table 5.1: Implicit Nullspace Method (General Case)

1. Use Gauss Elimination or orthogonal reduction on E and b
to replace E with its stairstep form E,.

2. Choose a convenient augmentation matrix M;. The interlacing
information (represented by the permutation mairix P below)
can be stored in a pointer vector.

&Fﬁmﬁ:P[&]umm=P[gy

M,
4. Initialize:
(a) 29 =0
(b) do = PEBITGT(c - GBy'by)
(c) %0=do

5. Fork=0,1,..., until dfdy < tolerauce:
(3) qu= PEBITFB Pase
(b) an = dldi/sqn
»ike1) (&) ‘
o[8[]+ 2
(d) ﬁh-t = "ﬂ‘ndb!/ d{ du
() sa41 = dis + Brads

6. Recover y = B Y(Prx + by) and exit.

81

so that it conforms to the substructuring to ensure that interlacing produces an
upper triangular matrix with the proper structure.

It remains to show that we can deal with problems in which G lacks full
column rank. We will deal with this topic in the next section, when we look at
specific choices of the augmentation matrix M.

5.3 Examples of Implicit Nullspace Methods

In this section, we propose some specific examples of implicit nullspace methods,
and discuss circumstances under which they might be appropriats. Eachis based

on a natural choice of the augmentaiion matrix M.

Algorithm INMI

The simplest possible implicit nullspace method, which we call algorithm
INMI, iavolves augmenting the stairatep matrix E, with rows of the (scaled or
unscaled) ideatity matrix J. If, for example, the matrix £, has the patterc

. . @)
L L]
E, = . o , {5.20)
L L g
then define . ;
M = 1 . (5.21)
i 1
After interlacing, we have
1 \
+* ¢ @
1
B = *], (5.22)
e @
1
L *.

If E, has substructured form, then so does B,, and triangular solves involving
B, and BT may be done in parallel as described in §3.1. Moreover, these sslves
can be coded to exploit the presence of rows of the identity.

A formal description of the INMI interlacing begins with a permutation
matrix P relating the stairstep form F, to the trapezoidal form E;. Given

EPw=|BP EPy|=[E Er|=E (5.23)

as in (3.11), ths matrix M, = PJ is precisely the augmentation matrix we seek.
With this choice of M, it is easy to show that the basis matrix N = B[} Py
reduces o N = PN;, where N is the fundamental basis matrix defined in
equation (5.4). Similarly, the particular solution y, = By ‘P[8] is actu-

-1
ally Uv=P[Ezéb

given in {5.3). Thus INMI is nothing but the implicit nullspace method in (5.5),

, which is a row permutation of the particular solution

corrected for interlacing.

Algorithm INMI is one way to solvs problems in which G is unavailable,
prohibitively dense, lacks full column rank, or is otherwise unsuitable fo: irter-
lacing; in particular, INMI is capable of handling saddle point problems. Bat,
since we ignore all information ia the matrix G when constructing the precon-
ditioner, there is good reason to expect little preconditioning effect beyond the
order reduction itself. This is in fact what we observed in our experiments (sze
chapter 6).

Algorithm INMG

If G has full column rank and coavenient structure, we can augment E, by
interlacing rows of G, exactly as we do in algorithm BNP. In fact, as shown
in the previous section, the resulting implicit nullspace method, which we call

83

algorithm INMG, has the same coefficient matrix as the BNP system. Of course,
as with BNP, algorithm INMG may fail if G lacks full column rank, since the
rows of G needed to augment E, may not be available.

The linear systems in BNP and INMG differ only in their unknowns and
righthand sides. Let z be the unknown coordinate vector in INMG (in §5.2 we
used v for other reasons). Then, by the analysis in the previous section, z is

related to the unknown r, in BNP by
z=c -] (5.24)

Recall from §5.2 that the travslated unknown in INMG gives us an important
advantage ovar algorithm BNP: ualike BNP, algoritkm INMG can be used to
solve saddle point problems. We demonst:ats this on a Stokee problern in chap-
ter 6.

In the spacial case ¢ = J (e.g. the structures application), the two unknowns
satisfy & = —ry, 50 the BNP and INMG systems differ only by a negative sign.
The stop criteria in the algorithms also have the same interpretation, so we
should expect the two algotithms to perform identically. In fact, INMG out-
performed BNP in all our experiments (see chapter 6); this is how we identified
the instability in the BNP recursion (3.34) defining the defact .

As with each of the metliods we describe, there are opportunities to code
solves and matrix-vector products in INMG to expioit the special properties of
the preconditioner. In particular, depeading oa the structure of F and G, one
may want to use the fact that Gy By Pr = I to compute the conjugate gradient
direction vector sy.

[* »)
E, = * *
' [o o]
* - * L I
1
(o o o 1 B = * *
o o hllig
G _ e e * &
- . L *
e o
Figure 5.1: Interlacing in Algorithm INMGI
Algorithm INMGI

We have already observed several times that il G lacks full columu rank, we
may be unable to interlece rows of E, and G to produce an upper trianjular
raatrix By. In particular, if there is no row of E, with leading ron-zero in
colutnn j, then interlacing requives the existence of a row of G with leading
non-zerc in that colunin, When ' lacks full columa rank, such a row of G may
or may not exist.

There is, however, an obvicus way to combine the techniques in algorithms
INMI and INMG to overcome this difficulty. One can use rows of G to augment
E, when such rows are available, and use rows of the identity matrix I when
there is no appropriate row in G. We call this approach algorithm INMGI.

Consider, for example, the matrices in figure 5.1. To produce B, the aug-
mentakion matrix M; requires rows with leading non-zeros in each of columns
1, 3, and 6. There are rows of G with leading non-zeros in columns 1 and 6, so

we iaclude these rows in M. The remaining row of M, comes from the identity

85

matrix; after interlacing, B; has the depicted form.

While this apprM is successful in solving problems involving rank deficient
G, there is a potential problem: unless the non-zeros in all rows of M; are of
roughly the same magnitude, the resulting basis matrix may have columns of
widely varying size, resulting in a badly conditioned coefficient matrix. Consider
a very simple example. Let E be of the form

E=[E, E; Er|, (5.25)

where Ey, is upper triangular and non-singular. Suppose there are no rows of G

with leading non-zeros in the columns associated with Eg. Then form

E, Ec Egr]

B = D (5.26)

Gu

where D is a diagonal matrix (a scaled version of the portion of I used in
the augmentation), and G,; is again the lower righthand corner of G. We can
explicitly calculate the inverse of By; from that, we obtain the basis matrix:

N=[aD? GGy |, (5.27)

where C; and (}; are given by

~-Ef'Ee —-EptEg
Ci= I , Ci= 0 (5.28)
0 I

Assuming the non-zero elements of £ are of roughly the same magnitude,
the non-zeros of C; and C; are likely to be of order one. Thus, the conditioning
of the basis matrix depends on D! and Gj}. If the non-zeros in one of these
matrices are of different magnitude than those in the other, the basis matrix
(and hence the nullspace normal equations) will probably be poorly conditioned.

86

We observed this phenonenon in our experiments: without scaling, conver-
gence of INMGI actually required more iterations than the size of the problem.
In our engineering test problems, however, the blocks of G were all of compa-
rable magnitude. Thus, we simply scaled G and ¢ by a constant multiple of
the identity so that the non-zeros in G were O(1). The results, reported in

chapter 6, were much more encouraging.

Algorithm INMF

We have already proposed one implicit nullspace method, algorithm INMI,
capable of solving problems in which the matrix G is either unavailable or
unsuitable for interlacing. Intuitively, though, this approach seems less than
promising, since we ignore all information in G when constructing the precon-
ditioner. Experiments reported in chapter 6 confirm that the precounditioner
produced by INMI is not effective at all.

There is, however, another way to approach the problem: we can use infor-
mation in F' = GTG to construct the augmentation matrix. One possibility is
to generate a Cholesky factorization of a portion of F (for example, the block
diagonal portion), then use rows of this factorization to form Afy. Another
option, as yet untested, is to use selected rows of an incomplete Cholesky
factorization of F (see the appendix for a brief description of such a factor-
ization). In both cases, the intent is that the factorization produces a G which
is at least a rough approximation of the matrix G.

While intuition suggests that this approach should produce a better pre-
conditioner than algorithm INMI, there is one potential problem with using
approximate factorizations of F to form M;. It is important to remember that

87

we are not using the entire factorization as a preconditioner; we are instead us-
ing only selected rows of what is already a crude approximation to G. This may
result in an augmentation matrix of little or no value. It is possible, perhaps
likely, that the cost of both producing the factorization and using the resulting
B, within iterations may prove to be wasted effort. In fact, this is precisely
what we observe in one of the experiments described in the next chapter.

In chapter 6, we report on experiments with most of the methods described
here. We note, however, that there are other possibilities which remain untested.
One could, for example, use an incomplete orthogonal factorization of a
complicated matrix G to produce a simpler approximation & suitable for in-
terlacing (see appendix). Another possibility is what one might call a partial
orthogonal factorization of G: instead of reducing G completely, use orthog-
onal rotations on only a selected portion of G to produce a matrix G suitable for
interlacing. It is clear that the possibilities are endless: algorithm INM offers a
great deal of flexibility in constructing the preconditioner. What we have yet
to establish is whether any of the proposed algorithms efficiently solve problem

LSE in its various formulations.

6. Numerical Experiments

In this chapter, we report on the results of numerical experiments with the
iterative algorithms discussed in this thesis, including both the conjugate gradi-
ent methods (BNP, Pwgt, and various forms of INM) and the linear stationary
methods (2-cyclic SOR and 3-AOR). We compare and contrast the behavior of
the algorithms, and examine parallel performance on substructured problems.

Section 6.1 is a summary of the conditions under which we conducted the
tests. In §6.2, we consider three small models of elastic structures. Besides
providing us with an opportunity to validate the codes, these problems offer the
best means of studying the behavior of 2-SOR and 3-AOR. Then, in §6.3, we
consider the performance of the conjugate gradient methods on elastic problems
of more realiatic size.

In the last two sections, we look carefully at the exteusions to ulgorithm BNP
by considering problemns for which BINP is not well svited. Section 6.4 describies
models of structures with simulated “~axage,” producing preblems in which
the matrix G lacks full column rank. In §6.5 we consider the markei-and-cell
saddle point formulation of the Stokes problem.

6.1 Overview of Experiments

All experiments were run on a two-processor Alliant FX/40. We employed full
optimization, including vectorization, on all test problems, but we inhibited
vectorization within the codes when it was appropriate to do so. We also used
the DAS compiler option, allowing the compiler to assume that finite precision
arithmetic is associative. This gives the compiler the flexibility to rearrange
the order of computations, enhancing the opportunity for concurrent execution.
Occasionally, however, the DAS option causes the results for an experiment run
on two processors to differ slightly from those obtained on a single processor;
in particular, one sometimes observes minor differences in the total number of
iterations required to achieve a solution of a specified accuracy. To simplify the
tables, we report iteration counts only for the two processor case.

Execution times (in seconds), obtained using the Alliant etina intrinsic, in-
clude all operations except input/output (for the Stokes problems, this includzas
the coet of generating the matrices). In all problems, however, only the iteration
times were significant: pre-processing, including factoring E and completing the
interlacing step, typically required caly 1-2% of the cpu time.

For convenience, we list the algorithms tested in our experiments:

BNP: otder-reducing conjugate gradient method due to Barlow, Nichols, and
Plemmons (§3.2).

Pwgt: preconditioned weighting method (§3.3).

2-SOR: optimal 2-cyclic successive over-relaxation applied to the modified
Kuhn-Tucker equations (§3.3).

3-AOR: optimal three-block accelerated over-relaxation applied to the modi-
fied Kuhn-Tucker equations (§3.3).

INMI: implicit nullspace method in which the preconditioner is formed by
interlacing rows of E with rows of the identity matrix I (§5.3).

INMG: implicit nullspace method in which the preconditioner is formed by
interlacing rows of E with rows of G (§5.3); essentially equivalent to al-
gorithm BNP.

INMGLI: implicit uullspace method in which the preconditioner is formed by
interlacing rows of E with rows of G when the appropriate rows of G are
available. When such rows are not available, rows of the identity matrix I

are used to comnplete the constructiou (§5.3).

INMF': implicit nullspace method in which the preconditioner is iormed by
interlacing rows of E with rows coastructed in some way from information
in the matnx F' (§5.3). In our tests on the Stokes problem, we use rows
from the Cholesky factor of the block diagonal portion of F.

All programs were writtea in FORTRANTT using double precision arithmetic
and sparse, row-oriented data structures, Since we attempted to solve thres
distinct types of problems {elastic structures, structures with rank deficient
blocks in G, and Stokes fiow), we coded as inany as three versions of a given
algorithm. For each type of problem, we desagned the codes so that the data
structures, logic, and primary subroutines (especially the factorization of £, the
triangular solves, and matsix-vector multiplications) were as similar as possible
from one algorithm to wndther. We did, of course, try to take advantage of

9

special features of each algorithm. Thus, for example, the codes for algorithm
INMI accomplish triangular solves involving B, by exploiting the fact that B,
contains rows of the identity matrix.

We did not write special codes for algorithm INMG. Instead, we used the
INMGI codes to run algorithm INMG on full rank problems (algorithm INMGI
is equivalent to INMG in this case, since the rows of G needed for interlacing
are always available). The logic and data structures in INMGI are somewhat
more complex tkan for the other algorithms, since the code must be able to
identify and deal with column rank deficiencies in G. Thus, the times reported
for algorithm INMG are slightly slower than they would be had we written code
specifically designed for full rank problems.

We decided that the fairest, most meaningful way to compare the algorithms
was to report the times required to produce a result of specified accuracy. There-
fore, for each problem we constructed a “true” soluiion (by means described
in each section), and adjusted the stop tolerance for each algorithm until the
reported error (in the infinity norm) was as close as possible to a specified accu-
racy. We used the standard stop criterion for all conjugate gradient methods: if
the algorithm solves the symmetric positive definite systein Kz = f, terminate
execution when the quantity [[f — K=(*)]3 is less than the specified tolerance
(this quantity occurs naturally within each iteration). For the linear stationary
methods, we terminated execution when the change in successive iterates was
smaller chan the specified tolerance.

In the preconditioned weighting algorithm, we experimented with the value
of the weighting parameter r to obtain the best possible results. In all cases, the
best choice of r was between 10° and 107, with little difference in performance

92

as 7 vaiied over this range. This is consistent with the theory in Barlow [2].

We also report that we have have run the codes on several other architec-
tures, including the Cray Y-MP, the Alliant FX/8, and Sun 3/50 workstations.
We have only anecdotal results on these machines, and did not attempt to opti-
mize the ported codes. Therefore, we include here only results for experiments
on the FX/40.

6.2 Small Full-Rank Structures Problems

The three small test problems described in this section are all models of elastic
structures (see §2.2). The resulting constrained minimization problems involve
a symmetric positive definite matrix F which is block diagonal. Thus, the
corresponding Cholesky factor G is square, of full rank, and block diagonal
with upper triangular blocks. We used these problems as a means of validating
our codes, but they also gave us a chance to compare the linear stationary
methods (2-SOR and 3-AOR) against the conjugate gradient algorithms (BNP,
INMG, INMI, and Pwgt). '

Problem WRENCH4 (figure 6.1a) is a substructured version of a test prob-
lem due to Lawo [6]. It consists of 48 planar elements, and produces a problem
with 112 constraints and 216 unknowns. The diagonal blocks in the element
flexibility matrix are 5x5 for the rectangular elements, and 3x3 for the tri-
angular elemeats. The applied force is indicated by the arrows in the figure.
We partitioned the structure into four substructures as shown in the figure; the
resulting transition zone has 50 columns.

Problem DAM2 (figure 6.1b) is a trapezoidal region intended to be a rough
approximation of a cross-section of a dam, modelled using square and triangular

93

-\{' ’.\-ir
L1 LSS SIS SIS 7

(c) SOUD1

(b) DAM2

Figure 6.1: Models for Small Full-Rank Problems

planar elements as described in Preemisniedki (32 Like WRENCHS, the blocks
in F are 3x5 for the rectangular elements, and 3x3 for the triangular elements.
The external load simulates a body of water against the left vertical wall. The
model produces a problem with 104 constraints and 244 unknowns. Thare are
two substructures as shown in tha figure; the resulting transitioa zone has 33
calumna.

Problem SOLID1 (figure 6.1¢), also modelled using techniques in [32], ap-
proximates a building subjected to the force of a steady wind approaching cee
of its vertical edges. This version coasists of 60 solid tetrahedral elements (five
tetrahedrons in each small cube), and produces & problem with 81 constraints
and 360 unknowns. Each of the 60 blocks in the block diagonal matrix F is
6x6. Again there are two substructures. The resuiting transition zose is quite
lasge, consisting of 120 out of 360 columns.

In practice, these problemns are all too smali to justify substructuring tech-

94

niques; the transition zones are far too large, and the substructures themselves
are not weli valanced. We constructed substructured versions of the small prob-
lems primarily to validate the codes. Note that we deliberately chose partition-
ings which produced at least one unstable substructure (see §2.4) so that there
would be diagonal blocks in £ which were deficient in row rank. In all three
problems, we could have chosen natural partitionings which produce stable, full
rank substructures.

To measure error, we obtained the “true” solution to each problem by solv-
ing the original Kuhn-Tucker equations (2.6) wsing LINPACK [8]. We thea
adjusted the stop tolerances for each algorithm so that the infinity norm of the
reported error was roughly 107, We summarize the results of the experiments
in table 6.1.

The results for SOR and AOR are for the approximatas optimal values of
the iteration parameters (obtained experimentally). We report that AOR is
highly sensitive to the choice of the parameters: very small deviations from
the optimal values result in either divergence or a drastic reduction in the rate
of convergence. In all three test problems, the tegion of convergence in the
w-5 plane appears to be a tiny, namrow crescent-shaped region. The choice
of parameter in 2-cyclic SOR is consistent with the theory (see (4] and [24)):
convergence occurs for all w below a sufficiently small critical value, with the
optimal choice occurring very close to that critical value. It is clear from the
tables that thesc test problems do not satisfy the conditions in Papadopoulou,
Saridakis, and Papatheodorou [28), since 2-SOR outperforms 3-AOR by a wide
margin. Moreover, for each of these problems, all of the conjugate gradient
algorithms proved vastly superio: to the Linear stationary methods.

85

Table 6.1: Numerica.l_ Results: Small Full-Rank Structures Problems

WRENCH4
(216 unknowns, 112 constraints)

BNP INMG PWgt INMI 2.SOR 3-AOR
Tterations”]| 33 | 93 34 | 40 | 457 | 2439
3 proc time || 345 | .352 | .343 | .355 | 3.58 | 19.0
1 proc time || .535 | 550 | .522 | 618 | 5.75 | 30.7
Speedup || 1.55 | 1.56 | 152 | 1.74 | 1.61 | 1.62

DAM2
(244 unknowns, 104 coustraints)

BNP INMG PWgt INMI 2-SOR 3-AOR
Tterations® || 52 49 51 78 818 | 5991
2 proc time || .595 | .609 | 571 | 791 | 8.24 | 60.8
1 proc time || 899 | .011 | .852 | 1.30 | 12.4 | 91.7
| Speedup || 1.51 | 1.50 | 1.49 | 1.64 | 1.50 | 1.51

SOLID1
(360 unknowns, 81 constraints)

BENP INMG PWgt INMI 2-SOR 3-AOR
Iterations* 41 41 42 88 208 609
2 proc time || 736 | 773 | .7T21 | 1.32 | 3.32 9.56
L}_)roc time || 1.08 | 1.13 1.02 2.06 | 4.81 14.0
Speedun 147 | 146 1.47 1.56 145 1.46

“Minor differences occasioaally occur when changing number
of processors. Statistics are for two-processor runas.

96

Algorithms BNP, INMG, and PWgt all performed comparably on these prob-
lems. This is as expected: BNP and INMG are sclving the same linear system
(§5.3), and both BNP and INMQG are esseutially the limiting case of PWgt
(§4.3). In the next section, however, we will observe that these algorithms
behave differently on larger test problems.

Note that INMI performed measurably slower thaa the other conjugate gra-
diegt algorithms, especially on ihe three-dimensional problem SOLIDI. This
is consistent with our expectations: while INMI is an order-reducing method,
the algorithm ignotes all information in the matrix & when constructing the
preconditioner.

On all problems, speedups are quite reasonable given the large transition
-ae and imbalances ia the substructures, They are also consisteni across the
algorithms; this reflects the fact that the principal subroutines are similar in
each of the codes.

6.3 Larger Full-Rank Structures Problems

Having validated the codes on the small test problems described in the previous
saction, we then experimented with larger elastic structures problems; we report
the results of those tests here. Becausa of the poor performance of 2.SOR and
3-AOR ov the small test problems, and the difficulty of determining appropriate
iteration parameters for these algorithms, we did not test the linear stationary
methods on this set of problems.

Problens DAMI10 (figure 6.2a) is similar to DAM2 (see §6.2), except that
there are more elements i~ the model. There are 1,220 planar elements, pro-

ducing a problem with 2,440 constraints and 6,020 unknowns. We consider two

97

'}“//”///////’//Y//////f/)f///f/f//”?

(a) DAM10 (b) SOLID2

Figure 6.2: Models for Large Full-Rank Problems

versions of the problem: one involving no substructuring of the physical domain,
and ancther with two substructures of fairly equal size (and 17§ columns in the
transition zone). Again, we deliberately chose a transition zone consisting of
a horizontal strip through the domain (see the figure), so that the upper sub-
atructure would be unstable, and one of the diagonal blocks in the equilibrium
matrix would lack full row rank.

Problem SOLID2 (figure 6.2b) is similar to SOLID1 (see §6.2), except that
the rectangular solid is very tall, and there are more elements in the model.
There are 220 free nodes and 660 tetrahedral elements in this model, producing
& problem with 660 coustraints and 3,960 unknowns. As with DAMI1), we
consider one version with no substructuring, and a second version with two
substructures. Even though the matrices are fairly large for this problem, the
geometry of the model does not allow a small transition zone: there are 360
transition colurnns, which is almest 10% of the total number of columns in the

equilibrium matrix.

As with the problems in the previous section, we compared the solutions
produced by each algorithm to a reference vector assumed to be the “true” so-
lution. This time, however, the problems were too large to obtain a solution
using LINPACK on the Kuhn-Tucker equations. Since all algorithms produced
results consistent with the LINPACK solutions on the smaller versions of the
structures problems, we felt confident that the codes were working correctly.
Therefore, we solved each problem using algorithm INMG with a stop tolerance
of ¢ = 10-1%, and used the resulting solution as the “true” solution when com-
puting errors. We then adjusted the stop tolerances on each algorithm so the
renarted error (in the infinity norm) was roughly 2x10-4.

We summarize the results of the experiments in table 6.2. Perhaps the
%, interesting difference between these results and those i table 6.1 concerns
the relative performanc: of BNP and INMG. Despite the fact that the two
methods solve the same linear system in essentially the same way, algorithm
INMG is superior, especially on DAM' 0. Here we see clearly for ihe fiest time
that the method used to calculate the defect in algorithm BNP 1s unstable: it
causes inaccuracies in the dire-tion vectors and scale factors, resulting i slower
coavargence (ses §3.2). If we replacs the non-standard calculation of the defect
with the more conventional update based or. explicit use of a direction vector
and scale factor, the resuli~ for BNP coincide aimost exactly with INMG. In
this case, the iwo codes ace Vi -for-line virtually identical; the maj.r difference
is the fact hat algorithr. BNP updates the original unknown y at each iteration,
while INMG recovers y after iterations cease (§5.3).

If we think of algoritbm INMG as an improved version of BNP, the results
for PWgt make sense. Since BNP (and therefore INMG) is the limiting case

99

Table 6.2: Numerical Results: Large Full-Rank Structures Problems

DAM10
(6,020 unknowns, 2,440 constraints)

Two Substructures:

BNP INMG PWgt INMI
Tierations” ﬂms 910 | 985 | 1416

2 proc time {| 282. | 227. | 232. | 356.
1 proc time || 483. | 386. | 399. | 603.
Speedup [171] 170 | 1.72 | 1.70

No Substructuring:

BNP INMG PWgt INMI
Iterations || 937 | 782. 830 | 1139
1 proc time {| 3564. | 304. 312. | 44.

SOLID?2
(3,960 unknowns, 660 constraints)

Two Substructures:

BNP INMG PWgt INMI
Iterations® ¥ 231 | 223 [227 | 689

2 proc time || 64.2 | 633 | 62.1 | 191,
1 proc time j| 864 | 875 | 87.3 | 277.
Speedup |l 1.35 | 1.38 | 141 | 145

No Substructuring:

BNP INMG PWgt INMI
Iterations 453 429 432 11@2__
1 proc time || 114, 112, 103. 291.

*Minor differences occasionally occur when changing number
of processors. Statistics are for two-processor runs.

100

of the preconditioned weighting algorithm, it is orly logical that the results for
INMG are slightly better than those for PWgt. Because BNP in its original form
is converging more slowly than it ought to (see previous paragraph), algorithm
PWgt outperforms BNP on both preblems.

Comparing the results with and without substructuring is also quite inter-
esting: the problems change character completely when one changes the parti-
tioning of the physical domain. For DAMI10, convergence is significantly better
without substructuring, while for SOLID2, it it significantly better with two
substructures. On both problems, however, the results with two substructures
on two processors are superior to those obtained with one processor on one
substructure. Speedups (comparing substructured results on one versus two
processors) were not as geod as we would have liked, but clearly reflect the
aize of the transition zone: tests on SOLID2, which has a large transition zone,
exhibit significantly poorer parallel performance.

Once again, INMI performed badly. This was true even when we experi-
mented with various types of scaling. It is quite clear that one cannot afford to
ignore the matrix G in constructing a preconditioner for an implicit nullspace

method.

6.4 Rank-Deficient Structures Problems

To test our ability to solve problemn LSE when the matrix G lacks full column
rank, we modified the problems described in the previous section to simulate the
presence of “damaged” elements. We did this by defining a “damaged” region
in each model, and setting Poisson's ratio v to the appropriate critical value for
each element in the region (see §2.2). The associated blocks of the matrix F

101

R ummn
\ A7/
Mnnn
~‘V rma

/////////////////////////////////

(a) DAM10D (b) SOLID2D

Figure 6.3: Models for Rank Deficient Problems

are then non-negative definite and singular, so the corresponding blocks in the
generalized Cholesky factor F are rank deficient. The modified regions in each
problem are small enough to ensure that hypothesis H2 (§2.1) is still satisfied,
80 the problems remain well posed.

For the reasons described in chapter 5, interlacing with rows of G fails for
these problems. Thus, algorithms BNP and Pwgt, at least as we have imple-
mented them, cannot be used. The same is true of algorithm INMG, which is
essentially an improved version of BNP. We are left with algorithms INMGI
and INMI.

Problem DAM10D (figure 6.3a) is a modified version of DAM10 (see §6.3);
there are 2,440 constraints snd 6,020 unknowns. The modified region (the dark
area in the figure), consists of 100 elements, or 8% of the total area of the model.
The cotresponding blocks in F and G are 5x5 with rank 4. Thus the rank of G
is 5,920; this is 100 short of the total number of columns in G. Despite a rank

102

deficiency of 100, only 10 rows of the scaled identity m:.trix were needed by the
INMGI to produce an upper triangular matrix B;. |

Problem SOLID2D (figure 6.3b) is a modified version of SOLID2 (see §6.3);
there are 660 constraints and 3,960 unknowns. The modified region (the dark
area in the figure), consists of 20 elements, or 3% of the total voiume of the
model. The corresponding blocks in F and G are 6x6 with rank 5. Thus
the rank of G is 3,940; this is 20 short of the total number of columns in G.
Algorithm INMGI required 12 rows of the scaled identity matrix to complete»
the construction of B;.

Once again, these problems are too large to obtain a solution by using LIN-
PACK on the Kuhn-Tucker equations. We obtained solutions consistent with
the LINPACK solutions on smaller versions of these problems, so we felt confi-
dent that the codes were working correctly. Therefore, we solved each problem
using algorithm INMGI with a stop tolerance of ¢ == 10-%, and used the resulting
solution as the “true” solution when computing errors. We then adjusted the
stop tolerances on each algorithm so the reported error (in the infinity norm)
was roughly 10~4,

Table 6.3 is a summary of the vesults for these test problems. While both
INMGI and INMI successfully sclve the problems, algorithm INMGI is clearly
superior. Algorithm INMGI uses as much information as possible from the
matrix G. In both problems, very few rows of the identity matrix are needed
to form By, so algorithrn INMGI is “almost™ INMG for these problems. We do,
however, note that it is necessary to scale the matrices as described in §5.3 to
achieve these results: when the rows of G are not O(1) (or, equivalently, if we
do not scale the identity matrix before using it for interlacing), the performance

103

Table 6.3: Numerical Results: Rank Deficient Structures Problems

DAM12D
6,020 unknowns, 2,440 constraints
Rank of G: 5,920
Twa Subsiructures:
INMGE INMI
Werationa* || 1645 2380
2 proc time || 410 591

lproctime | 713. 1 1040
“Speedup 17 1.73

SOLIDID
(3,960 unknowns, 660 covstraints)
Rank of §: 3,340

Two Substructures:

INMGL INMY

w18 | 1802
O T
418, | oo

I

*Minor differences occasionally cecur when chasging number
of prucessors. Statistics are for tvo-processor rans.

104

" is INMGI is unacceptable.

6.5 Stokes FIOvy

To test our ability to solve saddle point ptobiems, we experimented with the
marker-and-cell formulation of Stokes flow on the unit square (§2.3). As men-

_tioned in chapter 4, a.lgorithm BNP.can.not be used to solve this problem. Al-
gorithm INMG, which is the nullspace version of BNP, can deal with it easily.
We can alzo use Pwgt, INMI, and any of several versions of algorithm INMF.
Ta test algorithm INMF, we used selected rows of the Cholesky factor of the
block diagonal pust of F to augment the equilibrium matrix. Recaliing from
§2.3 that the dingonal blocks of F are tridisgonal, this means the code used
selected rows of the Cholesky factor of the tridiagonal part of F' to form the
sugmantation matrix. We did not form F explicitly in any of the codes; the
subroutine which computes the mateix-vector product F'z in INMG, INMF, and
- INMI uses the atencd defining the action of F' on an srbitrary vector (again, see
§2.3).v This routine is quite fast, and explains the fact that the time required for
each iteration of thase algorithms is about half that required for an iteration of
Pwgt.

We tested both a 50330 grid (resuliing in a problem with 2,49 pressure coa-
straints and 4,500 unknown velocity components), and a 100100 grid (9,999
ptessure consiraints and 19,800 vokoowas). We ran each problem with and
without substructuring; there were two sub-domains in the substructured ver-
sions. Algorithms INMG and PWgt, which reqguire that the matrix G reflect the
substructuring, employ the wide transition zone described in §2.4. Algorithms
INMI and INMF do not use G; we thescfore used the narrow transition zone

105

described in that section. In both cases, the transition zone constitutes a small
percentage of the columns of E.
We used the following artificial “flow” as our test problem:

v = 2zcosy
= —zlsiny
p = sy’

Here v, and v, are the horizontal and vertical components of the (continuous)
velocity vector, and p represents pressure. The velocity has non-zero divergence,
but is irrotational (curl v = 0). In fairness, we report that we have been unable
to use our codes to solve for rotational flows: on several problems involving
non-zero curl, we obtained errors (based on the true continuous solution) on
the order of 2103 regardless of the specified mesh. We have not been able to
determine the cause of this behavior.

We used the continuous solution as given above to measure the error ob-
tained by each algorithm. We varied the stop tolerances for each algorithm to
determine the smallest attainable error on the given grid, and thea ran the tests
of each algorifthm with the largest stop tolerance which produced this error. For
the 80x50 grid, the smallest attainable error {measured in the infinity norm)
was roughly 6x10~¢ for all algorithms; for the 100x 100 grid, the bes. attain-
able error was roughly 3% 10-3. Thus, the discretization appears to be an O(h)
global approximation to the continuous problem.

* Table 6.4 summarizes the results of the experiments. We observe that the
tri-diagonal portion of F produces a poor preconditioner in INMF. It seems we
cannot afford to ignore the information in the outer bands of F' when construct-

106

Table 68.4: Numerical Results: Stokes Flow on Unit Square

80x50 Grid
(4,900 unknowns, 2,499 constraints)

Two Substructures:

INMG PWgt INMI INMF
TRerations* H 354 | 433 [1601 | 1637 |
2 proc time || 69.4 | 85.6 | 127. | 157.
1 proc time || 127. | 157. | 224. | 283.
Speedup ﬂ 183 | 1.83 | 1.76 | 1.80

No Sabstructuring:

INMG PWgt INMI INMF
[terations H_m 234 | 1605 | 1881

1 proc Ume || 26.1 | 86.2 | 214. | 272.
100x%100 Grid
(19,800 urkunowns, 9,999 constraints)
Two Substructuzes:

. INMG_ PWgt INMI INMF
Teerations® § 1132 | 1370 | 8534 | 8352
2 proc time J| 463. | 1120. | 2990. | 3400.

L proe me §35. | 2120, | 5180. | 6000,

speedup 180 | 189 | 1.73 | 1.79

No Substructwring:

—— INMG PWgt INMI INMF
Iterations j 385 | 5394 | 9721 | 8503
1 proc time | 274. | 886. | 4980. | 5930.

*Minor differences occasionally occur whea changing number
of processors. Statistics are for two-processor runs.

107

ing the preconditioner, especially when we are only using selected rows of the
factorization we obtain. INMI also performs pootly, as it did on all other test
problems. |

Algorithm INMG, on the other hand, performs fairly well; the natural factor
G of the Laplacian matrix F (see §2.3) allows us to take advantage of some
outer band information in constructing the preconditioner. The difference in
iterations between INMG and PWgt is greater here than it is for any other
class of problems; the substantial difference in total time is due to INMG's
efficient matrix-vector multiplier (based on the stencil defining F).

Notice we obtain quite reasonable speedups on the Stokes problem: the
transition zones are fairly small, and the subdomains have virtually identical
structure. On the other hand, the results for INMG without domain decom-
position reflect an extraordinary reduction in the number of iterations. The
change in the rate of convergence is so dramatic that the time required to solve
the problem on oae processor without domain decompositioa is almost half that
- needed for the substructured problem oo two processors. Clearly oue would need
a move sophisticated approsch to constructing M to overcome the peunlty as-
sociated with domain decomposition applied to the Stokes problem. Incomplste
Cholesky decompositions offer cuc possibility worth exploring.

We note that we made o attempt to exploit the underlying coatinuous
problem to construct a plausible stasting vector for the iterations. \We were
interested in the discretized Stokes problem oaly as an example of a linear
system in saddle point form. The experiments indicate that we have in fact
succoeded in exteading BNP to a class of algorithms capable of solving such
systems.

108

7. Conclusions

The analysis and experiments described in this thesis hardly constitute an ex-
haustive study of the subject at hand. But the work does seem to make a con-
vincing case that algorithm BNP in particular, and order-reducing conjugate
gradient methods in general, offer a promising alternative to existing methods
for solving large, sparse constrained minimization problems.

The proofs that algorithm BNP is superior to p-cyclic SCR [4] and block
AOR (chapter 4) hold only in exact arithmetic. But the tesults are decisive
for the test problems we have considered: even the poorest implicit nullspace
method proved faster than optimal 2-SOR aad 3-AOR by a wide margin. Addi-
tionally, order-reducing conjugate gradient methods free the user of the burden
of chosing iteration parameters. It is quite difficult to determine the optimal
parameter{s) in both p-cyclic SOR and block AOR. In the case of 3-AOR, it
may be hard to select parameters for which the algorithm even converges. If
| anything, the experiments may understate the advantage of the conjugate gra-
dient inethods, since production codes would normally need to determine the
SOR and AOR parameters adaptively.

By establishing that aigorithm BNP is the limiting case of the precoaditioned
weighting method, we have shown that BNP is competitive with yet another
approach to solving problem LSE. Again, the experimental evidence supports

109

the analysis. For e.ch of the problems we considered, algorithm INMG, which
is essentially an impreved version of BNP, achieved performance comparable to
(and generally faster than) preconditioned weighting.

Perhaps the most encouraging aspect of this work is the characterization
of algorithm BNP' as a nullspace method, and the resulting extension to more
general implicit nullspace methods. We obtain a class of methods capable of
solving problems for which algorithm BNP does not appear to be well suited,
including saddle point problems, and problems in which G lacks full column
rank. Moreover, for problems reflecting a substructuring of the physical domain,
implici¢ nullspace methods offer opportunities for parallel computation.

In addressing the question of how to construct an augmentation matrix which
leads to an effective implicit nullspace method, we have merely scratched the
surface: of the methods we have tested, only those which depend heavily on rows
of G (algorithms INMG and INMGI) show potential as truly robust algorithms.
But flexibility in the choice of the augmentation matrix M; appears to be the
greatcst strength of the approach we describe. We strongly believe that further
research on more effuctive ways to generate the augmentation matrix will prove

fruitful.

110

8. References

(1] J. Batt and S. Gellin, Rapid Resunalysis by the Force Method, Comp.
Meth. in App. Mech. and Eng., 53 (1985), pp. 105-117.

[2] J. Barlow, Error analysis and aspects of deferred correction for equality
constrained least squares problems, SIAM J. Numer. Anal., 25 (1988),
pp. 1340-1358.

[3] ——, private communication, December, 1989.

[4] J. Bstlow, N. Nichols and R. Plemmons, Iterative methods for equality con-
strag;)ed sI;ea.st squares problems, SIAM J. Sci. Statist. Comp., 9 (1988),
pp. 892-906.

{8] -~——, Iterative methods for equality constrained least sqgares problems, In-
ternal Report CS-87-04, Dept. of Computer Science, Penasylvania State
University, January, 1987.

(6] M. Berry, M. Heath, 1. Xaneko, M. Lawo, R. Pleramons and R. Ward, An
Algorithm to Compute a Sparse Basis of the Null Space, Numer. Math.,
47 (1985), pp. 483-504.

(7] A. Bgorck, Least Squares Methods, in Handbock for Numerical
i‘sg:; ods, ed. by P. Ciarlet and J. Lions, Elsevier/North Holland Vol. 1,

[8] J. Dongarra, J. Bunch, C. Moler and G. Stewart, LINPACK Users’
Guide, SIAM, Philadelphia, PA, 1979.

(9] L Duff, R. Grimes, J. Lewis, Users’ Guide for the Harwell-Boeing Sparse
%ggriz Collection, manuscript, Boeing Computer Services, Seattle, WA,

(10] M. Fiermann, W. Niethammer and A. Ruttan, Optimal successive overre-
lazation iterative methods for p-cyclic matrices, Numer. Math., to ap-

peav,

[11] R. Freund, A note on two block-SOR methods for sparse least squares prob-
lems, Lin. Alg. and Applic., 88-89 (1987), pp. 211-221.

[12] G. Golub and C. van Loan, Matrix Compautations, Johns Hopkins Uni-
versity Press, Baltimore, MD, 1983.

111

[13] A. Hadjidimos, Accelerated overrelazation method, Math. Comp., 32
(1978), pp. 149-157.

(14] L. Hageman and D. Young, Applied Iterative Methods, Academic
Press, New York, NY, 1981.

(15] C. Hall, Numerical solution of Navier-Stokes problems by the dual variable
method, SIAM J. Alg. Disc. Meth., 6 (1985), pp. 220-236.

{16] F. Harlow and F. Welch, Numerical calculations of time dependent viscous
incompressible flow of fluid with a free surface, Phys. Fluids, 8 (1965).

[17] M. Heath, R. Plemimons and R. Ward, Sparse Orthogonal Schemes for
. Structural Optimization Using the Force Method, SIAM J. Sci. Statist.
Comp., 5 (1984), pp. 514-532.

(18] D. James, Implicit Nullspace Iierative Methods for Constrained Least
Squares Problems, submitted to SIAM J. Sci. Statist. Comp, Dec. 1989.

(19] ——, Order-Reducing Conjugate Gradients versus Block AOR for Con-
strained Least Squares Problems, Lin. Alg. and Applic., to appear, 1990.

[20] D. James and R. Plemmons, An Iterative Substructuring Algorithm for
Equilibrium Equations, Numer. Math., to appear, 1990.

[21] A. Jennings and M. Ajiz, Incomplete Methods for Solving ATAz = b,
SIAM J. Sci. Statist. Comp., 5 (1984), pp. 978-987.

(22] D. Kershaw, The incomplete Choleski-conjugate gradient method for itera-
tive zzojté?’on of systems of linear equations, J. Comp. Phys., 26 (1978),
Pp- .

(23] T. Maateuffel, Shifted Incomplete Cholesky Factorization, in Sparse Ma-
;xxx 1l;;g’;:;ceexdings 1978, L. Duff and G. Stewart, eds., SIAM, Philadelphia,
, 1979,

(24] T. Markham, M. Neumann, and R. Plemmons, Convergence of a direct-
iterative method for large scale least squares problems, Lin. Alg. and Ap-
plic., 69 (1985), pp. 155-167.

(25] J. Meijerink and H. van der Vorst, An Iterative Solution Method for Linear
é’ystema of Which the Coefficient Matrix is ¢ Symmetric M-Matriz, Math.
omp., 31 (1977), pp. 148-162.

(26] J. Ortega, Introduction to Parallel and Vector Solution of Linear
Systems, Plenum Press, New York, NY, 1988.

[27] J. Ortega and R.Voigt, Solution of Partial Differential Equations on Vector
and Parallel Computers, SIAM Review, 27 (1985), pp. 149-240.

(28] E. Papadopoulou, Y. Saridakis snd T. Papatheodorou, Block AOR ltera-
tive Schemes for Large-Scale Least-Squares Problems, SIAM J. Numer.
Anal., 26 (1989), pp. 637-660.

112

[29] D. Pierce., A. Hadjidimos and R. Plemmons, Optimality relationships for
p—cyclic SOR, Numer. Math., 56 (1990), pp. 635-643.

{30] R. Plemmons, A Parallel Block Iterative Scheme Apglied to Coniputations
gz_lStmctumI Analysis, SIAM J. Alg. Disc. Meth., 7 (1986), pp. 337-

(31] R. Plemmons and R. White, Substructuring methods for computing the
nullspace of equilibrium matrices, SIAM J. on Matrix Anal. and Ap-
plic., 11 (1990), pp. 1-22.

(32] J. Przemieniecki, Theory of Matrix Structural Analysis, Dover Pub-
lications, Inc, 1985.

(33] Y. Saad, Preconditioning techniques for nonsymmetric indefinite linear sys-
tems, J. Comp. App. Math., 24 (1988), pp. 89-105.

(34] G. Strang, A framework for equilibrium equations, SIAM Review,
30 (1988), pp. 283-297.

[35] ——, Introduction to Applied Mathematics, Wellesley Cambridge
Press, Wellesley, MA, 1986.

(36] R. Varga, p-cyclic matrices: a generalization of the Young-Frankel succes-
sive overrelazation scheme, Pacific J. Math., 9§ (1959), pp. 617-623.

(37] i-9—6—3-' Matrix Iterative analysis, Prentice-Hall, Englewood Cliffs, NJ,
[38] D. Young, Iterative Solution of Large Linear Systems, Academic
Press, New York, NY, 1971.

[39] ——, Iterative methods for solving partial differential equations of elliptic
type, Trans. Amer. Math. Soc., 76 (1954), pp. 92-111.

[40] Z. Zlatev and H. Nielsen, Solving large and sparse linear least-squares prod-
lgm:.l gg_ %nzjugate gradient algorithms, Comput. Math. Appl., 15 (1988),
ppP- .

113

9. Appendix: The Breakdown of
Incomplete QR Factorizations

The research which led to this dissertation began with a look at incomplete QR
preconditioners for ordinary least squares problems. We quickly developed an
interest in order-reducing conjugate gradients for constiained problems, leaving
unfinished the work on incomplete QR factorizations. Before this change in
direction, however, we encountered some simple examples of a mechanism which
can cause incomplete QR factorizations to break down. We felt these examples
were interesting enough to deserve a separate discussion; we include them in
this appendix. The notation throughout the appendix is independent of the
preceding chapters.

9.1 Preconditioning with Incomplete Factor-
izations
We consider the following ordinary least squares problem: given an m xn matrix
A with full column rank, and an mx1 vector b,
minimize || Az — b|j,. (9.1)
The unique solution = satisfies the so-called normal equations:

ATAz = ATb. (9.2)

114

Notice that the coefficient matrix ATA is symmetric positive definite when A
has full column rank.

There are, however, a number of well-known difficulties associated with using
the normal equations (see, for example, Bjorck (7] or Golub and van Loan [12]).
These include the conditioning of the problem (the spectral condition number
of ATA is the square of the condition number of A itself), and the O(n?) cost
and loss of information associated with forming ATA. We can avoid some of
these problems by leaving the normal equations in factored form and solving the
problem iteratively (using, for example, a conjugate gradient algorithm). But
convergence of the conjugate gradient algorithm still depends on the condition
number of ATA, so we generally need to precondition the normal equations to
have any hope of producing an effective algorithm.

Now suppose we have an orthogonal factorization of A given by A = QR,
where the matrix Q is orthogonal, and R is upper triangular. Recall that
RTR = AT A; in fact, R is (up to changes in the signs of the rows) precisely the
Cholesky factor of ATA. Given such a factorization, we could “precondition”

the normal equations:
RTATARw =R TATbh, wherew = Rz. (9.3)

But AR™! = Q, and QTQ = I, so this reduces to w = R-TATb.

Of course, there is no need to iterate on such a trivial system; we have in
fact described a way to use a QR factorization to solve a least squares problem
directly. But if we did apply a conjugate gradient algorithm, we'd achieve “con-
vergence” in one iteration. Thus, in a sense, the Cholesky factor of ATA is the

“perfect” preconditioner, and the thought experiment motivates an approach to

118

preconditioning the normal equations (9.2). Let R be some non-singular upper
triangular matrix which is in some sense a rough approximation of the Cholesky
factor R of ATA. We are tempted tc ask whether R may be a guod precon-
ditioner for the normal equations: perhaps AR-! is “roughly” orthogonal, and
the matrix 2-TATAR-! is a crude approximation of the identity matrix I. If

8o, then the preconditioned system
RTATAR b = R"TATd where v = Rz (9.4)
ought to be well-suited for the conjugate gradient algorithm.

9.2 A Strategy for Incomplete QR

One way to form the matrix R is to use a so-called incomplete Cholesky
factorization (see, for example, Meijerink and van der Vorst [25], or Ortega
[26]). Such factorizations compute a conventional Cholesky factorization of a
symmetric positive definite matrix, but retain only selected non-zeros as the
factorization proceeds. One could use a strategy based on the size of the non-
zeros, keeping only elements larger than some fixed or varying drop tolerance.
Alternatively, one might instead employ a method based on the position of the
non-zeros; here, one selects a predetermined non-zero pattern for the approx-
imate Cholesky factor R, preserving only those .non-zeros which conform to
the selected pattern. More sophisticated approaches, including combinations of
these methods, are of course possible (see, for example, Manteuffel [23] for an
algorithm which includes a shifting of the coefficient matrix).

The incomplete Cholesky factorization is certainly a promising approach to

preconditioning symmetric positive definite systems when the coefficient matriz

116

is already ezplicitly available. For problems involving normal equations, though,
we generally want to avoid forming ATA. For that reason, we might take a
somewhat different approach to constructing the preconditioner &: we could
apply orthogonal rotations to A as if we were accomplishing a QR factorization,
‘but again preserve only selected non-zeros. As with incomplete Cholesky, we
can accomplish such an incomplete QR factorization (IQR) by using drop
tolerances, specified non-zero patterns, or other more elaborate strategies (see,
for example, Jennings and Ajiz [21], or Zlatev and Nielsen 40]).

Regardless of the drop strategy, there is a question of existence to address.
Certainly a complete orthogonal factorization in exact arithmetic will produce a
non-singular upper triangular matrix 2. But once we begin dropping non-zeros,
we may in fact introduce linear dependence in the columns of the reduced ma-
trix, preventing us from generating a non-singular preconditioner R. Jennings
and Ajiz [21] describe a sophisticated strategy based on drop tolerances, and
prove that it produces a non-singular preconditioner. They produce a similar
result for a strategy based oz Gram-Schmidt orthogonalization (see also Saad
[33]). We examine here a strategy which uses Givens rotations and a drop
strategy based on the position of non-zeros.

Begin by agreeing to confine non-zeros in the upper triangular matrix & to
those positions in which AT A has non-zeros. We determine the non-zero pattern
of ATA by symbolic matrix multiplication. More precisely, columns ¢ and j of
the matrix A are said to be symbolically interactive (or simply interactive)
if there exists a k such that both a4 and ay; are non-zero. In this case, the
product ATA is said to have a symbolic non-zero in position (i,). If no such

k exists, we call the columns symbolically non-interactive (or simply non-

117

interactive), and we note that ATA has a (symbolic) zero in position (i, 7). This
approach to defining the non-zero pattern of ATA (and R) amounts to assuming
that no cancellation occurs in forming the product. Of course, since R is upper
triangular (and ATA is symmetric positive definite), we need only consider the
case § < j when performing the symbolic multiplication. The diagonal elements
of the product are always symbolically non-zero (in fact they are numerically
positive), because the columns of A interact with themselves.
Now apply the following reduction to A:

Incomplete QR Factorization

1. Use symbolic matrix multiplication to determine the non-zero data struc-
ture of the upper triangular portion of ATA. Use this information to fix
a static data structure for the approximate Cholesky factor R.

2. For targetrov=1,...,n:

(a) For pivotrow=1,..., (targetrov—1):
o If necessary, rotate pivetrow against targetrow, annihilating the
leading non-zero iu position k = pivotrow of targetrov.
o Accumulate all fill in targetzow; i.e. drop no non-zeros produced
in targetrow by the Givens rotation.
¢ Retain non-zeros in pivotzow only if they occur in positions corre-
sponding to symbolic non-zeros in the upper triangular portion
of ATA.
(b) Now that targetrow has been completely reduced, retain only those

non-zeros which occur in positions corresponding to symbolic non-

118

zeros in the upper triangular portion of ATA. Store the selected non-
zeros of this fully reduced row in the static data structure reserved
for R.

Thus we allow complete fill in a target row while reducing that row, but
restrict fill in the pivot rows to positions corresponding to symbolic non-zeros
of ATA.

In addressing whether this algorithm successfully produces a non-singular
upper triangular R, one might first ask the same question about incomplete
Cholesky factorizations. It has long been known that incomplete Cholesky
may break down when the drop strategy is based on the non-zero pattern of
ATA; Kershaw [22] provides a simple example. If ATA is either diagonally
dominant or an M-matrix, however, this form of incomplete Cholesky always
produces a non-singular preconditioner (in fact, a slightly more general result
holds; see Manteuffel [23]). One might be led to expect similar results for IQR.
We demonstrate in the next section that this is not the case: the IQR algorithm
described above can in fact break down, even if ATA is diagonally dominan? or
an M-matrix.

9.3 Examples of Incomplete QR Breakdown

In this section we demonstrate by example that the IQR algorithm described
above can in fact break down, even under faitly resirictive conditions.

Begin with the following 4x4 matrix A:

A= (9.5)

[~ — I
CH LD e s

00
01
11
0 2

119

The matrix has full column rank, so ATA is symmetric positive definite. (A is
square merely to keep the example small; one could easily construct rectangular
matrices to achieve the effects described below.)
We now apply the IQR factorization described in the previous section. Form-
ing the symbolic product ATA gives us the non-zero pattern for A:
.
»

R= (9.6)

* O«
% % % #

Note that there are symbolic non-zeros in every position except (2, 3).

We now detail the reduction. The non-zeros in row 1 of A conform to the
required non-zero pattern, so we retain row 1 as is. Row 2 has a zero in column
1, so no reduction is necessary. Again, its nop-zeros conform to the required
pattern, so we retain all the non-zeros. Now let row 3 be the target row. Begin
by uaing row 1 as the pivot row to annihilate the (3,1) element. Applying the
appropriaste Givens rotation produces

pivot — [1.4142 0.707T1 0.7071 0.70T1
0 10000 0 1.0000
target — 0 -0.70m 0.7071 0.70M1
0 60000 0 2.0000

(9.7)

Our strategy calls for preserving all elemeats in the target row until the
reduction of that row is complete, so at this point we discard no elements in
row 3. The non-zercs in the pivot row conform to the required pattern, so
we preserve all elements there as well. Thus, up until now, cur “incomplete”
factorization coincides with a classical QR factorization. We are not finished
reducing row 3, however. Now use row 2 as the pivot row to annihilate the (3, 2)

120

element. The complete Givens rotation (no discarded elements) looks like this:

14142 07071 0.7071 0.7071

pivot — | 0 12247 —0.4082 0.4082
target — | 0 0 05774 1.1547
0 6.0000 0 2.0000

(9.8)

Recall, however, that there is a symbolic zero in position (2, 3), so we must
discard the (2,3) element in the pivot row (in practice, we do not even generate
it). We also note that the reduction of target row 3 is now complete, so we
check to see if we must discard any non-zeros. The non-zeros in row 3 conform
to the required non-zero pattern, so we preserve all the non-zeres in this row.

Thus, when the reduction of target row 3 is complete, the matrix R looks like

-

14142 0.7071 0.7071 0.7071

0 1247 0 0.4082

target — 0 ¢ 0.5774 1.1547
0 6.0000 0 2.0000

Discarding the (2,3) entry bas created a dependency which will become
apparent on the next rotation. Row 4 now becoines the target row; usiag pivot
row 2 to annihilate the leading non-zeso produces the singular matrix below:

14142 0.7071 0.7071 0.7071

pivet — | 0 61237 0 20412
0 0 05774 11347

target —» | 0 2 0 0

(9.9)

(9.10)

The algorithm has failed to produce a nos-singular upper triangular A.

It's helpful to examine how we constructed the example. The 3x3 principal
submatrix in the upper left corner of (9.10) is non-singular, so its columns span
R3. In particular, the vector consisting of the first three entries of the last

column of (9.10) can be written as a unique linear combination of the columns

121

of this submatrix. Thus

1.4142
o 0 + a3

0

0.7071 0.7071 0.7071
6.1237 | + a3 0 = | 2.0412 (9.11)
0 0.5774 1.1547
for some unique choice of a;, a;, and a3. Now choose the elements in the
fourth row of the original matrix A so that the entries in the row satisfy the
same relationship:

| a4 + 0200 + 304 = au. (9.12)

This ensures the matrix lacks full column rank afier the element in position (2, 3)
is discarded. } we choose the entries in this row so that (9.12) is satisfied and
the original matrix has full column rank, we succeed in producing an example
of breakdown.

Note that this construction is not overly dependent on the fact that we are
using the non-zero pattern of ATA; given ancther strategy based on a specified
non-zero pattern, we may be able to construct 'an example of breakdown in a
similar manner. We need oaly begin to reduce a simple example, note the stage
at which the first element is discarded, and adjust the values of the elements
below the current target row to create a column dependency. (We should also
observe in passing that a dropped element can have the opposite effect, changing
a dependent set of vectors into an independent set.)

We note several other interesting facts about the algorithm and the break-
down mechanizm:

1. Row permutations may or may not prevent breakdown. If we permute rows
2 and ¢ ir the matrix A above, the incomplete factorization terminates
normally. But there is nothing special about this permutation: rows 2

122

and 4 have the same non-zero pattern, and we could just as easily have

chosen numerical values to cause breakdown for this permutation.

. There is at least one situation which guarantees a successful factorization.
Suppose we are given a matrix A with many more rows than columns,

and we partially reduce the matrix until reaching the form

[f:] : (9.13)

where R, is upper triangular and non-singular. Then subsequent incom-
pleta factorization cannot create dependent columns (in fact, continued
reduction cannot reduce the singular values of R;). This is because a
Givens rotation which uses a leading non-zero r in a pivot row of Ry to
annihilate a leading non-zero a in a target row of Ay will always leave
the larger non-zero value /¥ + a? on the diagonal of the pivot row. This
fact could prove useful in problems involving updating: if we start with a
matrix A and ar approximate R, then introduce new observations (rows),
we can update R using IQR without fear of breakdown.

. We can place much stronger conditions on the metriz A and still expen.-
ence breskdown. Consider, for example, the matrix

9 -3 0 O
0 9 0 -12
0 -7 0 6

In this case, ATA is strictly diagopally dominant, but breakdown occurs

exactly as it did in the example above. Similarly, the matrix

=5 5 0 10
0 5 0 -2
5 0 -5 &
0 -3 0 3§

A
&=

(9.19)

123

leads to a breakdown, despite the fact that ATA is an M-matrix.

Finally, we report that breakdowns such as these do in fact occur in practical
problems. We have tested the IQR factorization described in this section on
the four sparse rectangular matrices WELL1033, WELL1850, ILLC1033, and
ILI.C1850 from the Harwell-Boeing test collection (see Duff, Grimes, and Lewis
[9]), and observed breakdowns on WELL1850 and ILLC1850. We were able to
prevent breakdown by reordering the rows of the matrices in stairstep fashion
according to the positions of the leading non-zeros. Unfortunately, though,
simply producing a non-singular £ is not enough. For each of the four matrices
we tested, the quality of the IQR preconditioner was marginal at best: we have
not yet produced results which are fast enough to be competitive with any of
the established iterative methods.

124

